

Installation- and maintenance instruction

B 55, **B**65 **R**ME

Manualer på övriga språk

www.bentone.com\nedladdning eller scanna QR-koden

Skriv in brännarens artikelnummer som finns på din typskylt (se bild) och välj ditt språk

Manuals in other languages

www.bentone.com\download or scan QR-code

Enter the burner's article number on your data plate (see picture) and select language.

Gebrauchsanweisungen in anderen Sprachen.

www.bentone.com\download oder scannen Sie den QR-Code

Geben Sie die Artikelnummer des Brenners auf Ihrem Typenschild ein (siehe Bild) und wählen Sie die Sprache aus.

Manuels dans d'autres langues.

www.bentone.com\download ou scannez le code QR

Saisir le numéro d'article du brûleur sur votre plaque signalétique (consultez l'illustration) et sélectionnez la langue.

exempel example Beispiel

Table of contents

1. Ge	neral Information	4
2. Tec	hnical data	8
2.1		8
2.2	Working field B 55-2	
2.3		
2.4		
2.5		
2.6		
2.7		
2.8		
2.9		
2.1	0 Description B 55/B 65	
3. Ge	neral instructions	15
	General rules	
4. Ins	tallation	16
4.1	Handling and lifting instruktion	16
4.2		
4.3		
4.4		
4.5		
4.6		
4.7		
5. Bas	sic settings	19
5.1		
	B65-2R/B65-3R	19
5.2		21
5.4		
5.3		
5.5		
5.6		22
5.7		
5.8		
5.9		
6. Ma	intenance	24
6.1	Servicing the burner device	24
6.2	Servicing air dampers	25
6.3		
6.4		27
6.5		28
6.6		
6.7	Vibration	
6.1	1 Damper motor 2-Stage	30
6.1	2 Damper motor 3-Stage	31

. Ins	tructions Pump RSA 95 & 125	32
	Technical data	
7.2	Components	32
	Mounting/dismounting by-pass plug	
	Purging	
	Replacing the filter	
7.6	Function Danfoss RSA 95 - 125	33
7.7	Suction line tables	34
3. Rep	placement of electrical components	35
o. Oil	burner control	36
9.1	Wiring diagram LMO24.255 (B55-2H/B65-2H)	36
9.2	Wiring diagram LMO24.255	
	(B55-2H,R/B65-2H,R)	37
9.3	List of components /LMO24.255 (B55-2H,R/B65-	-2H,R)38
9.4	Colour codes LMO24	39
	Fault codes LMO24	
10. F	ault Location	40
	1 Burner will not start	
	2 Burner will not start after normal use	
10.	3 Delayed ignition	41
10.	4 Noise in pump	41
	5 Pump pressure	
11. L	.og of flue gas analysis	42
2 (Oil hurners maintenance instructions	43

1. General Information

This Installation and Maintenance manual:

- is to be regarded as part of the burner and must always be kept near the installation site
- is intended for use by authorised personnel
- must be read prior to installation
- must be observed by all who work with the burner and associated system components
- work with the burner may only be carried out by certified installers/ personnel
- Enertech AB is not liable for any typographical errors and reserves the right to make design changes without prior notice.
- The burner may only be used for its intended purpose in accordance with the product's technical data.
- The burner may only be installed and operated by authorised personnel.
- The product is packaged to prevent damage from occurring during handling. Handle the product with care. Lifting equipment must be used to lift larger packages.
- The products must be transported/stored on a level surface in a dry environment, max. 80% relative humidity, no condensation.
 Temperature -20 to +60 °C.
- Check that the burner is compatible with the boiler's output range.
- The label information on the rating plate refers to the burner's minimum and maximum power.
- The power data on the type sign refers to the burner's min. and max. power.
- All components must be installed without being bent, twisted or subjected to mechanical or thermal forces which can affect the components.
- The burner must be installed so that it complies with local regulations for fire safety, electrical safety, and fuel distribution.
- Make sure when installing the equipment that there is enough space to service the burner.
- Permitted ambient temperature during operation -0 to +60 °C. Max 80% relative humidity, no condensation.
- The installer must ensure that the room has adequate air supply.
- The room must comply with local regulations pertaining to its intended use.
- The installation site must be free of chemicals.
- Burner pipes, fan wheels and air dampers may contain sharp edges.
- The surface temperature of the burner's components can exceed 60
 °C.
- Caution: The burner has moving parts, and there is risk of crushing injuries.

- The electrical installation must be professionally carried out in accordance with applicable high voltage regulations, as per Enertech's recommendations.
- Before servicing, shut off the fuel supply and turn off the power to the burner.
- Leak checks must be performed during installation and servicing to prevent fuel leakage.
- Care should be taken by the installer to ensure that no electrical cables or fuel lines are crushed or otherwise damaged during installation or servicing.
- If the boiler is equipped with an access hatch, this must be equipped with a hatch opening switch connected to the burner's safety system.
- When in operation, the burner's noise level can exceed 85 dBA. Use hearing protection.
- The burner must not be put into operation without proper safety and protection devices.
- A Class BE fire extinguisher is recommended.
- It is forbidden to alter the design or use accessories which have not been approved by Enertech in writing.
- Prior to operation, the following points must be checked:
- fitting and installation work has been completed and approved
- electrical installation has been correctly performed
- flue gas ducts and combustion air ducts are not blocked
- all actuators and control and safety devices are in working order and correctly set
- After commissioning, if a steady red light on the burner control is displayed, contact your installation technician.

General requirements RME

This is a burner designed for FAME, B-100 (RME). fuel. The fuel must meet the requirements of standard EN 14214 for FAME. The equipment on the burner is, however, of such a quality that it is possible to use EO1 type oil without modification, although with appropriate adjustments to the combustion values after each change of fuel type.

The installation should be done in accordance with applicable standards, general as well as local regulations. The installer of the burner must therefore be aware of regulations regarding oil and combustion.

Only oil suitable for the burner must be used and then in combination with a suitable oil filter designed for FAME, B-100 (RME).) and installed before the burner's oil pump.

If the burner is replacing an existing burner, ensure that the oil filter is changed to a filter designed for FAME, B-100 (RME). Installation may only be performed by qualified personnel.

Care should be taken by the installer to ensure that no electrical cables or oil/gas pipelines are crushed or damaged during installation or servicing

Burners that run on FAME, B-100 (RME) fuel are and must be equipped with parts designed for this fuel. This applies in particular to oil-related parts such as the pump, solenoid valve, oil filter and hoses with fire-retardant sleeves.

Maintenance

The boiler/burner must be checked regularly for faults or leakage. Any boiler/burner that uses FAME (RME) fuel must be serviced at least twice a year. It is very important that worn parts are replaced at the time of servicing with new parts of the same quality.

Oil hoses must be of high-quality fluoride rubber or PTFE intended for FAME, B-100 (RME).

The hoses must be fitted with fire-retardant sleeves in order to satisfy requirements according to EN-ISO 6806.

Detailed ecodesign information can be downloaded at: www.bentone.com/ecodesign

Burner servicing schedule

Service is performed twice a year or after 3000 hours of operation

Burner	2 year	3000 hrs
Filter	2 year change	3000 h Change
Oil hose	1 year change	
Nozzle	2 year change	3000h Change
Electrods	2 Year Change /cleaning	3000h Change /cleaning
Brake plate	2 Year Change /cleaning	3000h Change /cleaning
Motor	2 year	3000 hrs
Cuppling chaft	2 year control/change	3000h control/change
Fan wheel	"2 Year Change when dirty / unbalance"	"3000h Change when dirty / unbalance"

Component replacement intervals

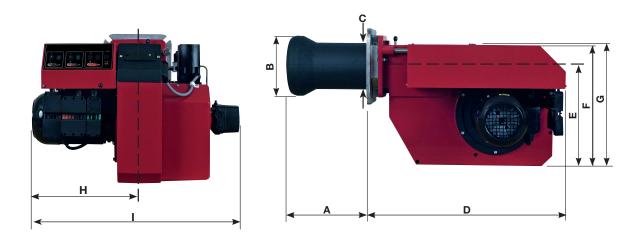
Components	Service life – Recommended replacement	Service life – Recommended replacement Operating cycles
Control system	10 years	250,000 cycles
Pressure switch	10 years	250,000 cycles
Flame guard	10 years	250,000 cycles
UV flame sensor	10000 hrs	N/A
Damper motor		500 000 cycles
Contaktor	10 years	500,000 cycles
Gas valve with seal testing	Replacement upon fault detection	N/A
Gas pressure switch	10 years	250,000 cycles
Safety blow-off system	10 years	N/A
Damper motor	N/A	500,000 cycles
Contactor	10 years	500,000 cycles

The burner and its components must be recycled according to applicable regulations.

Delivery check

- Make sure everything is delivered and the goods have not been damaged during transit.
- If something is wrong with a delivery, report it to the supplier.
- Transport damage must be reported to the shipping company.

2. Technical data


The burner is intended for:

• Light oil, B10 heating oil/biofuel blend (as defined in DIN V51603-6)

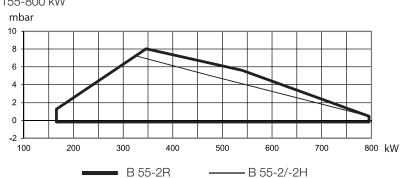
and is used for:

- Water heating generators
- Hot air generators (these require LMO 24 255 C2E)

2.1 Dimensions B 55/B65

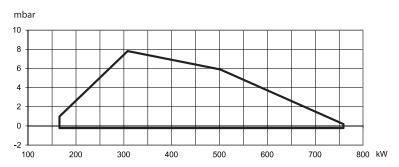
^{*} Min. recommended distance to floor.

Α	ØВ	øс	D	E	F	G	н	I	* J
274,374,474	160	155	610	321	400	405	304	609	200

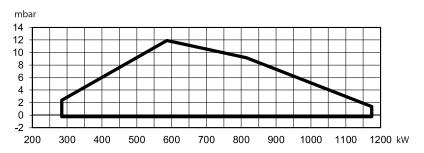

2.1.1 Electric Specification

Burner correspond to IP 20

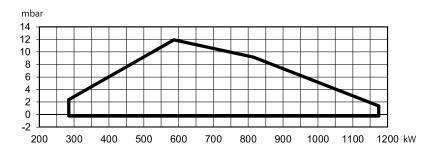
Туре	Motor supply	Main supply	Sound				
B 55	230/400V 5,8/3,3A	230V 0,38A 60Hz	89 dBA ± 0,5 dBA				
B 65	230/400V 5,8/3,3A	230V 0,38A 60Hz	89 dBA ± 0,5 dBA				
Max operating current, see data plate							


2.2 Working field B 55-2

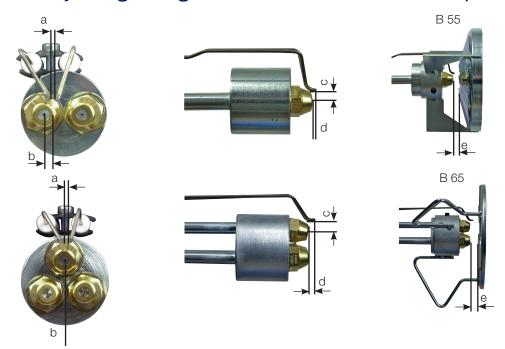
13,0-67,5 kg/h 155-800 kW


2.3 Working field B 55-3R

13,0-64,0 kg/h 155-760 kW


2.4 Working field B 65-2

22,0-99,5 kg/h 260-1180 kW



2.5 Working field B 65-3R

24,0-99,0 kg/h 285-1170 kW

2.6 Adjusting the ignition electrodes and brake plate

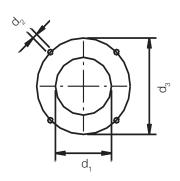
Burner, type	а	b	С	d	е
B 55-2	2,5-3,0	2,0	6,5-7,0	2,0	6,0-7,0
B 55-3	2,5-3,0	0,0	6,5-7,0	2,0	6,0-7,0
B 65-2	2,5-3,0	2,0	6,5-7,0	2,0	10,0-12,0
B 65-3	2,5-3,0	0,0	6,5-7,0	2,0	10,0-12,0

*NB It is important that the spark does not strike against the brake plate or nozzle

2.7 Recommended nozzle and pressure

Because of the various boiler types with varying furnace geometries and furnace loads, it is impossible to commit to a certain scattering angle or a specific distribution pattern.

It should be noted that the scattering angle and distribution pattern changes with pump pressure.


Nozzle:	45° Solid/semisolid
	60° Solid/semisolid
	80° Solid/semisolid
Pump pressure	10 bar (8-25 bar) depending on pump model

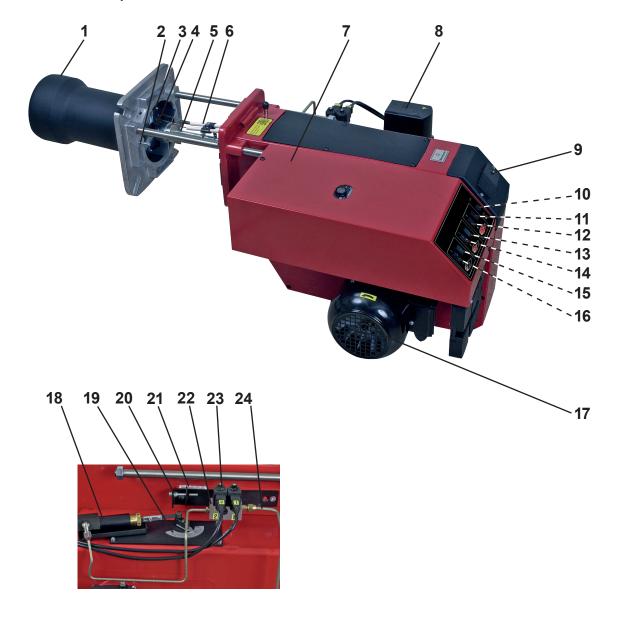
2.8 Burner installation

2.8.1 Hole patten

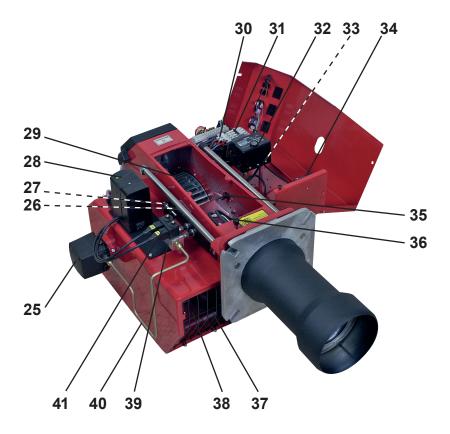
Make sure the hole pattern on the boiler is designed for burner flange.

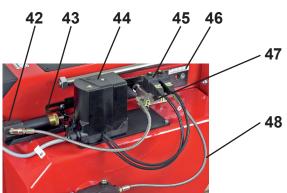
Combustion	d ₁	d ₂	d_3
device			
B 55	ø (155) 165	M14	ø (226) 254-300
B 65	ø (155) 205	M14	ø (226) 254-300

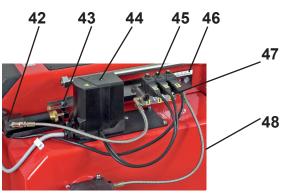
2.9 Nozzle table


Pump p	oressure b	oar 10			11			12			13	
Gph	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
1,00	3,72	44	38	3,90	46	40	4,08	48	42	4,24	50	43
1,10	4,09	48	42	4,29	51	44	4,48	53	46	4,67	55	48
1,20	4,47	53	46	4,68	55	48	4,89	58	50	5,09	60	52
1,25	4,65	55	47	4,88	58	50	5,10	60	52	5,30	63	54
1,35	5,02	59	51	5,27	62	54	5,50	65	56	5,73	68	58
1,50	5,58	66	57	5,85	69	60	6,11	72	62	6,36	75	65
1,65	6,14	73	63	6,44	76	66	6,73	80	69	7,00	83	71
1,75	6,51	77	66	6,83	81	70	7,14	85	73	7,42	88	76
2,00	7,45	88	76	7,81	93	80	8,16	97	83	8,49	101	87
2,25	8,38	99	85	8,78	104	90	9,18	109	94	9,55	113	97
2,50	9,31	110	95	9,76	116	100	10,19	121	104	10,61	126	108
2,75	10,24	121	104	10,73	127	109	11,21	133	114	11,67	138	119
3,00	11,16	132	114	11,71	139	119	12,23	145	125	12,73	151	130
3,50	13,03	154	133	13,66	162	139	14,27	169	146	14,85	176	151
4,00	14,89	176	152	15,62	185	159	16,31	193	166	16,97	201	173
4,50	16,75	199	171	17,57	208	179	18,35	218	187	19,10	226	195
5,00	18,62	220	190	19,52	231	199	20,39	242	208	21,22	252	216
5,50	20,48	243	209	21,47	255	219	22,43	266	229	23,34	277	238
6,00	22,34	265	228	23,42	278	239	24,47	290	250	24,46	302	260
6,50	24,20	287	247	25,37	301	259	26,51	314	270	27,58	327	281
7,00	26,06	309	266	27,33	324	279	28,55	339	291	29,70	352	303
7,50	27,92	331	285	29,28	347	299	30,59	363	312	31,83	377	325
8,00	29,79	353	304	31,23	370	318	32,63	387	333	33,95	403	346
8,50	31,65	375	323	33,18	393	338	34,66	411	353	36,07	428	368
9,00	33,59	398	343	35,14	417	358	63,71	435	374	38,19	453	389
9,50	35,37	419	361	37,09	440	378	38,74	549	395	40,31	478	411
10,00	37,23	441	380	39,04	463	398	40,78	484	416	42,44	503	433
11,00	40,96	486	418	42,94	509	438	44,86	532	457	46,68	554	476
12,00	44,68	530	456	46,85	556	478	48,94	580	499	50,92	604	519
14,00	52,12	618	531	54,65	648	557	57,10	677	582	59,41	705	606
16,00	59,57	706	607	62,46	741	637	65,26	774	666	67,90	805	692
18,00	67,02	795	683	70,27	833	717	73,41	871	749	76,39	906	779
20,00	74,47	883	759	78,08	926	796	81,57	967	832	84,87	1007	865
22,00	81,91	971	835	85,89	1019	876	89,73	1064	915	93,36	1107	952
24,00	89,36	1060	911	93,70	1111	956	97,88	1161	998	101,85	1208	1039
26,00	96,81	1148	987	101,50	1204	1035	106,04	1258	1081	110,33	1308	1168

The table applies to oil with a viscosity of 4.4 mm ²/s at a density of 830 kg/m ³.


Pump p	oressure b	oar 14			15			16			17	
Gph	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
1,00	4,40	52	45	4,56	54	46	4,71	56	48	4,85	57	49
1,10	4,84	57	49	5,01	59	51	5,18	61	53	5,34	63	54
1,20	5,29	63	54	5,47	65	56	5,65	67	58	5,82	69	59
1,25	5,51	65	56	5,70	68	58	5,89	70	60	6,07	72	62
1,35	5,95	70	61	6,15	73	63	6,36	75	65	6,55	78	67
1,50	6,60	78	67	6,83	81	70	7,06	84	72	7,27	86	74
1,65	7,27	86	74	7,52	89	77	7,77	92	79	8,01	95	82
1,75	7,71	91	79	7,97	95	81	8,24	98	84	8,49	101	87
2,00	8,81	104	90	9,12	108	93	9,42	112	96	9,71	115	99
2,25	9,91	118	101	10,26	122	105	10,60	126	108	10,92	130	111
2,50	11,01	131	112	11,39	135	116	11,77	140	120	12,13	144	124
2,75	12,11	144	123	12,53	149	128	12,95	154	132	13,35	158	136
3,00	13,21	157	135	13,67	162	139	14,13	168	144	14,56	173	148
3,50	15,42	183	157	15,95	189	163	16,49	196	168	16,99	201	173
4,00	17,62	209	180	18,23	216	186	18,84	223	192	19,42	230	198
4,50	19,82	235	202	20,51	243	209	21,20	251	216	21,84	259	223
5,00	22,03	261	225	22,79	270	232	23,55	279	240	24,27	288	247
5,50	24,23	287	247	25,07	297	256	25,91	307	264	26,70	317	272
6,00	26,43	313	270	27,49	326	280	28,27	335	288	29,13	345	297
6,50	28,63	340	292	29,63	351	302	30,62	363	312	31,55	374	322
7,00	30,84	366	314	31,91	378	325	32,98	391	336	33,98	403	374
7,50	33,04	392	337	34,19	405	349	35,33	419	360	36,41	432	371
8,00	35,25	418	359	36,47	433	372	37,69	447	384	38,80	460	396
8,50	37,45	444	382	38,74	459	395	40,04	475	408	41,26	489	421
9,00	39,65	470	404	41,02	486	418	42,40	503	432	43,69	518	446
9,50	41,85	496	427	43,30	514	442	44,75	531	456	46,11	547	470
10,00	44,06	523	449	45,58	541	465	47,11	559	480	47,11	559	480
11,00	48,46	575	494	50,14	595	511	51,82	615	528	53,40	633	545
12,00	52,87	627	539	54,70	648	558	56,53	670	576	58,25	691	594
14,00	62,68	732	629	63,81	757	651	65,95	778	669	67,96	806	693
16,00	70,49	836	719	72,93	865	744	75,38	894	769	77,67	921	792
18,00	79,30	940	809	82,05	973	837	84,80	1006	865	87,38	1036	891
20,00	88,11	1045	899	91,17	1081	930	94,22	1117	961	97,09	1151	990
22,00	96,92	1149	988	100	1189	1023	104	1229	1057	107	1267	1089
24,00	106	1254	1078	109	1297	1116	113	1341	1153	116	1382	1188
26,00	115	1359	1168	119	1406	1209	122	1453	1249	126	1497	1287


The table applies to oil with a viscosity of 4.4 mm 2 /s at a density of 830 kg/m 3 .


2.10 Description B 55/B 65

1.	Blast tube	10.	Fuse	18.	Adjustment device,
2.	Locking device, flange	11.	Indicating lamp Stage 3		air damper
3.	Brake plate	12.	Switch II-IIII	19.	Scale, air regulation
4.	Nozzle	13.	Indicating lamp Stage 2	20.	Nozzle assembly adjustment fixed
5.	Nozzle assembly	14.	Switch I-II	21.	Scale, nozzle assembly
6.	Ignition electrodes	15.	Indicating lamp Stage 1	22.	Solenoid valve bloc Stage 2
7.	Electric panel	16.	Switch 0-I	23.	Solenoid valves
8.	Damper motor	17.	Motor	24.	Connecting pipe
9.	Cover, inspection glass				

- 25. Pump
- 26. Scale, air regulation
- 27. Nozzle assembly adjustment fixed
- 28. Damper motor
- 29. Fan wheel
- 30. Thermal overload protection
- 31. Contactor
- 32. Control box
- 33. Front plate, relay base

- 34. Ignition transformer
- 35. Photocell
- 36. Ignition wires
- 37. Air damper
- 38. Air intake
- 39. Solenoid valve bloc Stage 2
- 40. Connecting pipe
- 41. Solenoid valve
- 42. Adjustment device, Nozzle assembly

- 43. Nozzle assembly adjustment hydrauli
- 44. Damper motor
- 45. Solenoid valve
- 46. Scale, Nozzle assembly
- 47. Solenoid valve bloc Stage 3
- 48. Hydraulic hose

3. General instructions

3.1 General rules

The installation of an oil burner should be carried out in accordance with local regulations. The installer of the burner must therefore be aware of all regulations relating to oil and combustion.

Only oil suitable for the burner should be used and then in combination with a suitable oil filter before the oil pump of the burner.

If the burner is replacing an existing burner make sure that the oil filter is replaced or cleaned. The installation must only be undertaken by experienced personnel. Care should be taken by the installer to ensure that no electrical cables or fuel/gas pipes are trapped or damaged during installation or service/maintenance.

3.1.1 Installation and maintenance instructions

The maintenance instructions supplied with the burner must be kept at an easily accessible location in the boiler room.

3.1.2 Instructions

The user must be receive detailed instructions concerning the functionality of the oil burner and entire system. It is the responsibility of the supplier to provide the user with instructions.

3.1.3 Inspection and maintenance

The boiler/burner should be examined regularly for any signs of malfunction or oil leakage. (See service schedule)

3.1.4 Start up

In order to obtain the correct setting, a flue gas analysis and temperature measurement must be carried out. Otherwise, there is a risk of soot build up, poor efficiency or condensation precipitation in the chimney. The system must be fine-tuned at start-up. The temperature in the chimney must be at least 60 °C at 0.5 m down in the chimney to prevent condensation.

4. Installation

4.1 Handling and lifting instruktion

Option

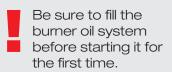
The lifting aid we used here are available as spare parts, Figure 1.

4.2 Acceptance inspection

Make sure everything is delivered and the goods have not been damaged during transit. If something is wrong with the delivery, report it to the supplier. Transport damage must be reported to the shipping company.

4.3 Preparations for installation

Check that the burner's dimensions and capacity range are suitable for the boiler in question. The power data on the type sign refers to the burner's min. and max. power.


4.4 Distribution of oil

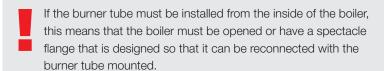
In order to achieve good reliability, it is important that the oil distribution system is designed correctly.

Take the following into account:

- Selection of pipe diameter, pipe length and height difference; see Pump instruction.
- Pipelines are to be laid with a minimal number of glands.
- The pipes are to be laid so that the oil supply hoses are not subjected to tensile stresses or are excessively bent when the burner is swung out or removed for service.
- The oil filter should be installed so that the filter cartridge can easily be replaced or cleaned. Self-cleaning filters are recommended for oils of a higher viscosity or oils that contain significant impurities.
- Oil-affected parts shall be selected in materials that are capable of withstanding the medium's physical properties.
- When installing oil hoses, check that the inlet and return hoses are fitted to the appropriate connection on the oil pump. The hoses shall be located so that they do not bend or become subject to tensile load.
- Bleed the oil system. The oil pump/oil preheater may be damaged if run dry. The vacuum should not fall below 0.3 bar in the suction line during start-up.

The oil filter must be installed before the burner's oil pump.

4.5 Electrical connection


- Before work on the electrical connection, the current should be disconnected so that the installation is isolated.
- Electrical connection must be done in accordance with the applicable regulations.
- Burners should be connected to an isolator switch.
- The connection should be made in accordance with the wiring diagram.
- · Fuse rating is as required

If any electrical connection is used other than that recommended by Bentone, there may be a danger of damage to property and personal injury.

4.6 Mount the burner on the boiler

- 1. Separate the burner body and the flange.
- 2. Remove the brake disc from the oil pipe.
- 3. Install the selected nozzle. (See Technical data)
- 4. Install the brake disc on the oil pipe
- 5. Remove the burner pipe from the flange.

- 7. Install the burner pipe on the flange. Make sure that the holes in the front edge of the burner pipe are pointing down (not on all burner pipes). This allows any drops of oil to run out.
- 8. Insulate between the burner and boiler door to reduce radiated heat.
- 9. Install the burner body on the flange.
- 10. Lock the burner body using with the nut/nuts.
- Connect the oil pipes to the pump, refer to the chapter servicing of burners
- 12. Connect the burner electrically, refer to the chapter servicing of burners

4.7 Check oil line seals

Once the burner has been installed and commissioned, the seals of the various coupling elements should be checked (A).

When a leak is detected, it is usually sufficient to tighten the coupling element that is leaking.

165 105 61

5. Basic settings

5.1 Typical basic settings for B65-2H/B65-2 B65-2R/B65-3R

Choice of nozzle B65-2H/B65-2/ B65-2R

Burner output 770 kW

Nozzle Stage 1 $770 \times 0.6 = 460 \text{ kW}$

460 / 11,86 = 38,8 kg/h

Nozzle Stage 2 $770 \times 0.4 = 310 \text{ kW}$

310 / 11,86 = 26,1 kg/h

According to the table of nozzles this gives the following nozzles.

Stage 1 8,50 Gph Stage 2 6,00 Gph

Pump pressure: 14 bar

Basic settings B65-2H

Nozzle assembly Stage 2 = 15Air adjustment Stage $1 = 25^{\circ}$

Stage $2 = 65^{\circ}$

Each graduation on the scale corresponds to 10°

Basic settings B65-2

Power outputs and nozzle choice from example.

Nozzle assembly Steg 2 = 15

Damper motor Closed = 0° Blue cam

Stage 1 = 25° Orange cam

MV $2 = 50^{\circ}$ Black cam

Stage $2 = 65^{\circ}$ Red cam

The black cam for Stage 2 (MV 2) must be placed between the cams for Stage 1 and Stage 2. The positions of MV 2 are determined by the boiler characteristics when switching between stages, but for a basic setting the black cam should be placed in the middle.

Basic settings B65-2R

Power outputs and nozzle choice from example

Nozzle assembly Stage 1 = 0

Stage 2 = 15

Damper motor Closed = 0° Blue cam

Stage 1 = 25° Orange cam

MV $2 = 40^{\circ}$ Black cam Stage $2 = 50^{\circ}$ Red cam

The black cam for Stage 2 (MV 2) must be placed between the cams for Stage 1 and Stage 2. The positions of MV 2 are determined by the boiler characteristics when switching between stages, but for a basic setting the black cam should be placed in the middle.

Choice of nozzle B65-3R

Burner output 880 kW

Nozzle 880 / 3 = 293 kW

293 / 11,86 = 24,7 kg/h

According to the table of nozzles this gives the following nozzles:

 Stage 1
 5,50 Gph

 Stage 2
 5,50 Gph

Stage 3 5,50 Gph

Basic settings B65-3R

Power outputs and nozzle choice from example

Nozzle assembly Stage 1/2 = 5

Stage 3 = 20

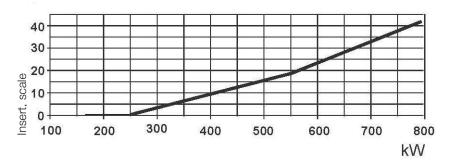
Damper motor Stage 1 = 10° Blue cam

MV 2 = 30° Black cam

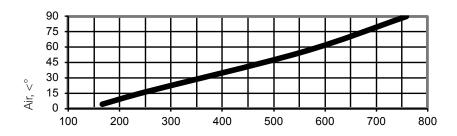
Stage 2 = 44° Orange cam MV 3 = 60° Green cam

Stage $3 = 80^{\circ}$ Red cam

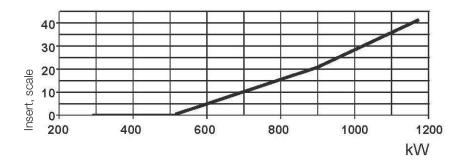
The cams for Stage 2 (MV 2) and Stage 3 (MV 3) must be placed between the cams for Stage 1 and Stage 2, and between Stage 2 and Stage 3, respectively. The positions of MV 2 and MV 3 are determined by the boiler characteristics when switching between stages, but for a basic setting the cams (MV2 and MV3) should be placed in the middle.

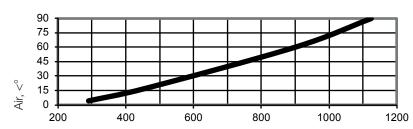

165 205 35

Recomended exsess air


Grade of Oil	Excess air flue gases		Max. % CO ₂
	% O ₂	% CO ₂ Lambda 1.2	
Light oil, B10 heating oil/	3–5	≈12,5	15,4
biofuel blend (as defined in			
DIN V51603-6)			

Prior to commissioning, the basic settings of the burner can be set in accordance with the diagram. See under Basic settings **Note that** it is simply a matter of a basic setting that should be adjusted retrospectively once the burner has started. A flue gas analysis and soot quantity measurement must be carried out when fine-tuning the burner.


5.2 Set values for nozzle assembly B55


5.4 Set values for air damper B55

5.3 Set values for nozzle assembly B65

5.5 Set values for air damper B65

5.6 Nozzle assembly regulation – fixed brake plate

Nozzle assembly regulation is used to achieve the most favourable pressure drop possible across the brake plate.

Nozzle assembly regulation should be adjusted for Stage 2 output

Adjustment

Adjust to the desired position on the scale (A) using the set screw (B) (turning anti-clockwise reduces the pressure drop and moves the brake plate outwards).

If pulsation occurs, the pressure drop across the brake plate can be alte-red until pulsation stops.

5.7 Nozzle assembly regulation – adjustable brake plate

Nozzle assembly regulation is used to achieve the most favourable pressure drop possible across the brake plate for each output stage.

Two nozzles

Nozzle assembly regulation adjusts the position of the brake plate between Stage 1 and Stage 2 by means of a hydraulic piston.

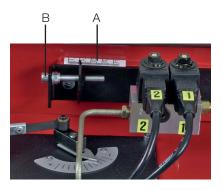
Three nozzles

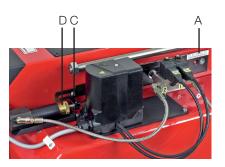
Nozzle assembly regulation adjusts the position of the brake plate between Stage 2 and Stage 3 by means of a hydraulic piston.

Low load

The low load adjustment takes place by changing the guide rail's mounting to the hydraulic piston.

This takes place using a locking screw located through an oval hole. In the default setting, the value that is read in the table (3,4 3,5) is used for the setting values for the chosen power for step 2. During operation, the insert is adjusted in order to achieve the best function.

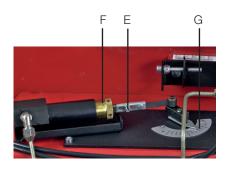

Undo the locking screw (C).


Set the desired position on the scale (A) by pushing the disc in the desired position.

Tighten the screw (C).

High load

Adjust to the desired position on the scale (A) using the set screw (D) (turning anti-clockwise reduces the pressure drop and moves the brake plate outwards). If pulsation occurs, the pressure drop across the brake plate can be alte-red until pulsation stops.


5.8 Hydraulic air adjustment

Stage 1

Set the control switch (S2) to low load (I). Undo the screw (E), turn the damper to the desired position and retighten the screw (E).

Stage 2

Set the control switch (S2) to high load (I). Use the adjuster pin to screw the sleeve (F) in (to reduce) or out (to increase). The position of the dam-per can be read from the damper scale (G). Carry out flue gas analysis to check the air settings

5.9 Air setting

When the burner's power stage has been selected, check the setting values for air dampers in table (3.6, 3.7). Read the damper angle for each of the power stages This must then be used when the settings are made in the burner's control system (se punkt 3.3)

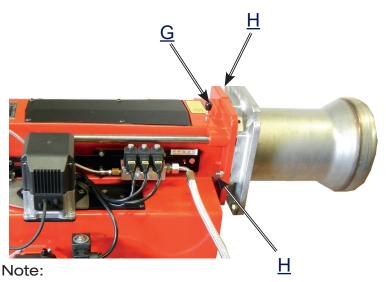
Check the air settings by conducting a flue gas analysis.

6. Maintenance

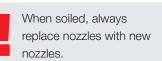
6.1 Servicing the burner device

Removal and fitting

1. Switch off the mains power.



If the burner is directly connected, ensure that all components on the burner are without power.

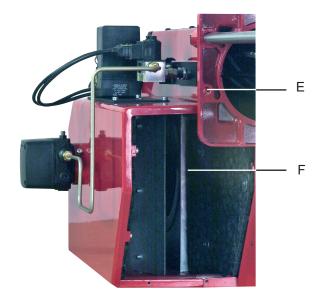

- 2. Remove the nuts (H) and pull the burner body out of the guides from the burner flange.
- 3. Remove the brake plate from the oil pipe and clean the brake plate.
- 4. Unscrew the nozzle.
- 5. Fit the nozzle.
- 6. Install the brake plate. (refer to Technical data)
- 7. Check the ignition electrodes. (refer to Technical data)
- 8. If necessary, replace the ignition electrodes.
- 9. Fit the burner body and the burner flange together and secure with the nuts (H).
- 10. Open the boiler/spectacle flange to access the burner pipe.
- 11. Remove and clean the burner pipe.
- 12. Install the burner pipe, make sure you install the drainage hole (not on all burner pipes) facing downwards so that any spilled oil can drain out.
- 13. Close the boiler / spectacle flange.
- 14. Turn on the mains power.
- 15. Check combustion*.

Use caution when operating the burner, surfaces may be hot.

When servicing/replacing components that affect combustion, an analysis and soot test must be carried out on the installation

165 205 36

6.2 Servicing air dampers

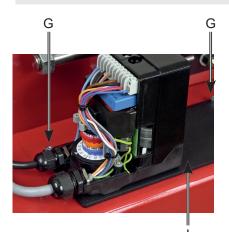

Removal and installation

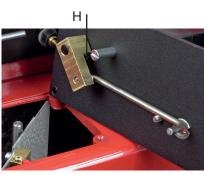
1. Break the main current and disconnect the Euro plugs from the burner.

If the burner is directly connected, ensure that all components on the burner are without power.

- 2. Undo the nuts (E) and pull out the burner body on its guides.
- 3. Remove the intake grille from the air intake.
- 4. Release the damper motor.
- 5. Clean the air damper (F) and the intake. Lubricate the damper shaft if applicable.
- 6. Re-engage the damper motor.
- 7. Fit the intake grille over the air intake.
- 8. Slide the burner together and secure it with the nuts (E).
- 9. Connect the Eurostecker connectors and turn on the main power switch.
- 10. Check combustion*.


Note:


* When servicing/replacing components that affect combustion, an analysis and soot test must be carried out on the installation


6.3 Replacing the damper motor

Removal and fitting

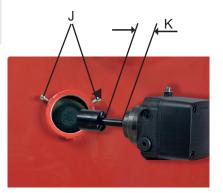
- 1. Turn off the main power switch and disconnect the Eurostecker connectors from the burner.
- 2. Note the positions of the cables and then disconnect the cables from the damper motor.
- 3. Release the damper motor and lock it at 30°.
- 4. Undo the screws (G) that secure the mounting plate for the damper motor.
- 5. Raise it carefully so that the air damper stays in the air intake.
- 6. Disconnect the (H) link arm from the motor shaft.
- 7. Separate the damper motor from the mounting plate (I).
- 8. Refit the damper motor on the mounting plate.
- 9. Connect the link arm to the damper motor shaft. It is important that the screw is at right angles to the plane of the shaft.
- 10. Release the damper motor and lock it at 30°.
- 11. Fit the mounting plate by guiding the link arm into the attachment point on the air damper and the air damper shaft into the mounting plate (make sure that the bushings are fitted between the mounting plate and damper shaft).
- Release the damper motor and check that the damper moves freely.
 Close the damper and zero the graduated scale on the damper motor.
- 13. Make the electrical connections to the damper motor.
- 14. Reset the damper motor cams.
- 15. Connect the Eurostecker connectors and turn on the main power switch.
- 16. Check combustion.*

6.4 Replacement of oil pump

Removal and installation

 Turn off the main power switch and disconnect the Eurostecker connectors from the burner.

If the burner is directly connected, ensure that all components on the burner are without power.

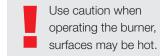

- 2. Disconnect the oil hoses from the pump.
- 3. Undo the screws (J) and pull out the oil pump.
- 4. Measure the distance between the pump mounting and the pump coupling (K).
- 5. Transfer the pump coupling to the new pump and adjust to give the same spacing between the pump and pump coupling as before (K).
- 6. Fit the oil pump on the burner and tighten the screws (J). (It is important that splines on the pump shaft align correctly with the pump coupling.)
- 7. Fit the oil hoses.
- Connect the Eurostecker connectors and turn on the main power switch.
- 9. Bleed the pump, start the burner and adjust to the correct oil pressure.
- 10. Check combustion.*

Use caution when operating the burner, surfaces may be hot.

When servicing oil bearing components, check the oil density when the burner is commissioned after servicing.

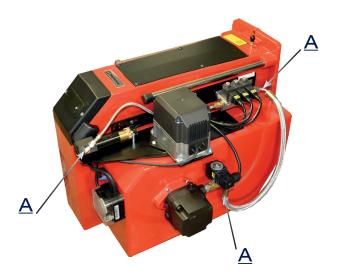
Note:

* When servicing/replacing components that affect combustion, an analysis and soot test must be carried out on the installation


6.5 Replacement of electrical components

1. Switch off the mains power.

If the burner is directly connected, ensure that all components on the burner are without power.

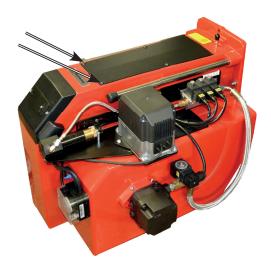

- 2. Note the connection of the existing component.
- 3. Remove the existing component.
- 4. Install the new component using the same wiring as the existing component or the specified alternative arrangement.
- 5. Turn on the mains power.
- 6. Check the function of the new component.
- 7. Start the burner and check the combustion*

6.6 Check oil line seals

Once the burner has been installed and commissioned, the seals of the various coupling elements should be checked (A).

When a leak is detected, it is usually sufficient to tighten the coupling element that is leaking.

Use Loctite 5188 on threaded oil lines


Note:

* When servicing/replacing components that affect combustion, an analysis and soot test must be carried out on the installation

6.7 Vibration

Maximum vibration level are 5,0 mm/s

- Check all bolts and nuts for correct torque
- Check fan wheel for damage and contamination. Change when dirty/ unbalanced
- Check motor bearings. If worn change motor/bearings

Use lid screw hole for sensor mounting

6.11 Damper motor 2-Stage

The damper motor rotates the damper between three preset positions. These positions are controlled at the motor by micro-switches, the switching positions of which are set using the coloured cams. There is also a black cam, which controls the activation of solenoid valve 2.

If the air flow requires adjustment:

Remove the cover from the damper motor and change the positions of the cams by turning them with the aid of the tool supplied. To deactivate a cam while you are turning it we recommend that you switch to a different stage and then switch back after adjustment is complete in order to check the result.

Stage 1

Adjust the operating switch to Stage 2 (II).

- * Reduce the air volume: Turn orange cam towards 0°.
- * Increase the air volume: Turn orange cam towards 90° .

Adjust the operating switch back to low capacity and check.

Stage 2

Adjust the operating switch to Stage 1 (I).

- * Reduce the air volume: Turn red cam towards 0°.
- * Increase the air volume: Turn red cam towards 90°

If the red cam is moved, change the black cam as much. Adjust the operating switch back to Stage 2 and ensure that the correct air volume has been obtained.

Releasing

The damper motor can be released using the white release button. This feature simplifies replacement of the damper motor.

To release Press down the shaft and slide it

outwards until it disengages from the

milled slot.

To engage. Slide the shaft inwards and release.

Adjust the position of the motor so that the cogs mesh with each other.

The blue cam is the limit position for fully closed damper and it is normally not necessary to change it.

Releasing button N.B.
The upper position is the standard position

165 205 39

6.12 Damper motor 3-Stage

The damper motor rotates the damper between three preset positions. These positions are controlled at the motor by micro-switches, the switching positions of which are set using the coloured cams. There is also a black cam, which controls the activation of solenoid valve 2 and a green one which controls the activation of solenoid valve 3.

If the air flow requires adjustment:

Remove the cover from the damper motor and change the positions of the cams by turning them with the aid of the tool supplied. To deactivate a cam while you are turning it we recommend that you switch to a different stage and then switch back after adjustment is complete in order to check the result.

Stage 1

Adjust the operating switch to Stage 2 (II)..

- * Reduce the air volume: Turn blue cam towards 0°.
- * Increase the air volume: Turn blue cam towards 90°.

Adjust the operating switch back to Stage 1 and check.

Stage 2

Adjust the operating switch to Stage 1 (I).

- * Reduce the air volume: Turn orange cam towards 0°.
- * Increase the air volume: Turn orange cam towards 90°.

If the orange cam is moved, change the black cam as much. Adjust the opera-ting switch back to Stage 2 and ensure that the correct air volume has been obtained.

Stage 3

Adjust the operating switch to Stage 2 (II).

- * Reduce the air volume: Turn red cam towards 0°.
- * Increase the air volume: Turn red cam towards 90°.

If the red cam is moved, change the green cam as much. Adjust the operating switch to Stage 3 (III) and ensure that the correct air volume has been obtained.

Releasing

The damper motor can be released using the white release button. This feature simplifies replacement of the damper motor.

To release Press down the shaft and slide it

outwards until it disengages from the

milled slot.

To engage Slide the shaft inwards and release.

Adjust the position of the motor so that the cogs mesh with each other.

Solenoid valve Stage 3 (green)

Solenoid valve Stage 2 (black)

Stage 2 (orange)

Releasing button N.B. The upper position is the standard position

165 205 40

7. Instructions Pump RSA 95 & 125

7.1 Technical data

	RSA 95		RSA 125
Viscosity range::		1,3-18,0 mm ² /s	
Pressure range at viscosity 1,3-1,8:		5,5-12,0 bar	
Pressure range at viscosity 1,8-18,0:		2,5-21,0 bar	
Oil temperature:		-10 till+70°C	
Nozzle capacity at viscosity 4,3:	150-190 l/h		215-260 l/h
Gear capacity:	225 l/h		294 l/h
Max pressure on the suction and return side::		4 bar	

7.2 Components

- 1. Pressure gauge port G 1/8"
- 2. Nozzle outlet G 1/4"
- 3. Suction line G 1/4"
- 4. Suction line G 1/4"
- 5. Return line G 1/4"
- 6. Return line G 1/4"
- 7. Return plug
- 8. Pressure regulation 4 mm Allen key

7.3 Mounting/dismounting by-pass plug

In a 2-pipe-system excess oil is led back direct to the oil tank. In a 1-pipe-system the by-pass plug must be removed so that there is a free passage back to the suction side through the return line with the return port closed. (Pos.7).

7.4 Purging

On 1-pipe systems it is necessary to purge the pump. On 2-pipe systems purging is automatic through the return line.

7.5 Replacing the filter

Replace the oil fiter on the oil pump as follows..

- · Close the oil valves.
- Unscrew the cover (4 x 5 mm Allen screws).
- Replace the oil filter.
- Replace the cover gasket.
- · Refit the cover.
- Open the oil valves.

7.6 Function Danfoss RSA 95 - 125

When the pump is started oil is drawn through the suction port "S" via filter "H" to the suction side of the gearwheel set "C". From here the gearwheel set pumps the oil to the pressure side and at the same time the oil becomes pressurized. The oil is led to cut-off and regulating valve "V" which opens when the set pressure is reached.

The pressure is controlled and kept constant by regulating valve "V". At the same time the gearwheel set "C" distributes the oil through nozzle port "P" and pump return side "R" via the shaft seal "F".

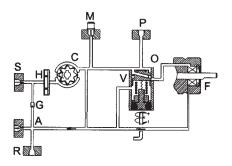
The quantity of oil supplied to nozzle port "P" is determined by the pressure set on regulating valve "V" and the nozzle/resistance in the nozzle line.

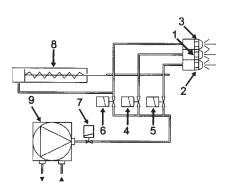
In 2-pipe-systems excess oil is led back to the oil tank. In 1-pipe-systems the by-pass plug "A" must be removed to give free flow back to the suction side via return line "G" with return port "R" closed.

When the pump is stopped, the pump output drops and produces a drop in the oil pressure. The spring in the regulating valve presses the regulating piston forward until it seals in port "P". This cuts off the oil flow to the nozzle and ensures that the nozzle line is effectively shut off.

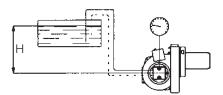
If the pump is overloaded, i.e. more oil is demanded than the gearwheel is able to pump under the given conditions, the oil pressure falls below the set value because the piston of the regulating valve moves towards its closed position and partially or wholly cuts off the return oil via port "O".

This can be remedied by

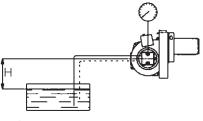

- reducing the pump pressure
- · reducing the capacity, i.e. smaller nozzle or greater resistance
- · changing to a pump with higher capacity


Schematic diagram

1.	Nozzle	Stage 1	
2.	Nozzle	Stage 2	
3.	Nozzle	Stage 3	
4.	Solenoid valve	Stage 1 (Y1)	
5.	Solenoid valve	Stage 2 (Y2)	
6.	Solenoid valve	Stage 3 (Y3)	


- 7. Safety valve for nozzle (Y1S)
 - Only for capacities over 100 kg/h or on special request by customer
- Hydraulic control device
 Only on burners with hydraulic air control or nozzle assembly optimisation.
- 9. Oil pump

Items 3 and 6 are not fitted to two-stage burners. Item 8 is connected after solenoid valve nozzle 2 (Y2).



7.7 Suction line tables

1-pipe system		Pipe diameter		
Höjd				
Н	ø12mm	ø15mm	ø20mm	
m	m	m	m	

Two-pipe system				
Height		Pipe diameter		
Н	ø12mm	ø15mm	ø20mm	
m	m	m	m	
4,0	81	100	100	
3,5	76	100	100	
3,0	71	100	100	
2,5	66	100	100	
2,0	61	100	100	
1,5	56	100	100	
1,0	51	100	100	
0,5	46	100	100	

1-pipe sys	stem		
Height		Pipe diar	meter
Н	ø12mm	ø15mm	ø20mm
m	m	m	m

With an underlying tank a 1-pipesystem is not recommended.

Two-pipe system				
Height		Pipe diameter		
Н	ø12mm	ø15mm	ø20mm	
m	m	m	m	
0,0	41	100	100	
-0,5	36	89	100	
-1,0	31	77	100	
-1,5	26	65	100	
-2,0	22	53	100	
-2,5	17	41	100	
-3,0	12	29	91	
-3,5	7	17	53	
-4,0	2	5	15	

The suction line tables consist of theoretically calculated values where the pipe dimensions and oil velocity have been matched so that turbulences will not occur. Such turbulences will result in increased pressure losses and in acoustic noise in the pipe system.

In addition to drawn copper piping a pipe system usually comprises 4 elbows, a non-return valve, a cut-off valve and an external oil filter. The sum of these individual resistances is so insignificant that they can be disregarded.

The tables do not include any lengths exceeding 100 m as experience shows that longer lengths are not needed. The tables apply to a standard fuel oil of normal commercial quality according to current standards. On commissioning with an empty tube system the oil pump should not be run without oil for more than 5 min. (a condition is that the pump is being lubricated during operation).

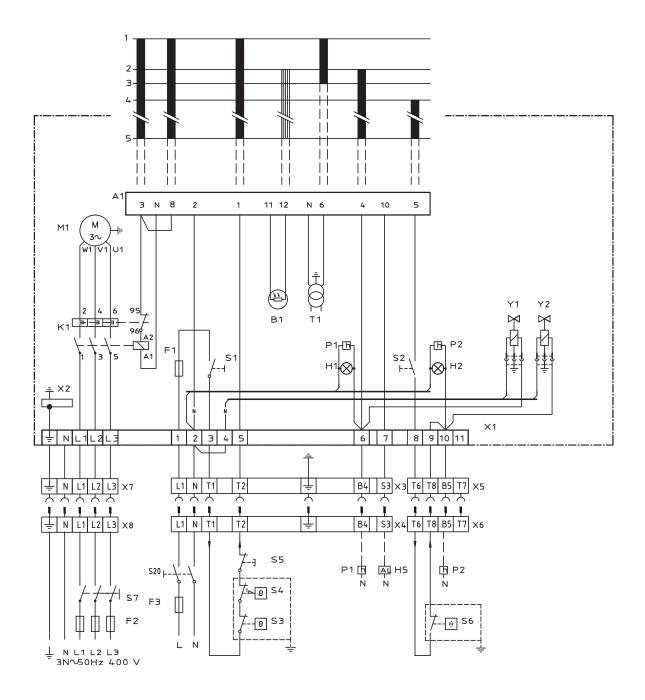
The tables state the total suction line length in metres at a viscosity of 6,0 mm2/s.

8. Replacement of electrical components

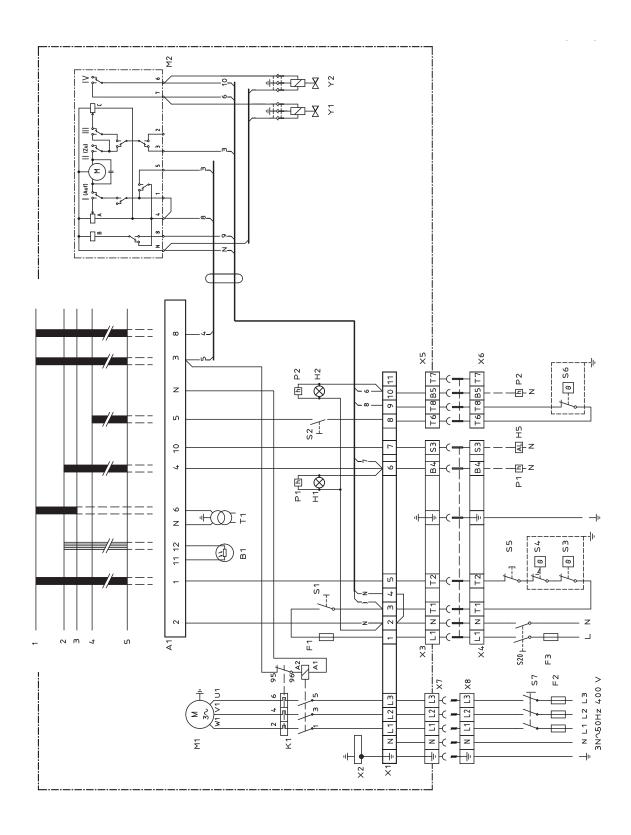
- 1. Switch off the mains power.
- 2. Note the connection of the existing component.

If the burner is directly connected, ensure that all components on the burner are without power.

- 3. Remove the existing component.
- 4. Install the new component using the same wiring as the existing component or the specified alternative arrangement.
- 5. Turn on the mains power.
- 6. Check the function of the new component.
- 7. Start the burner. Check combustion.*


Note:

* When servicing/replacing components that affect combustion, an analysis and soot test shall be carried out on the installation.


165 105 11

9. Oil burner control

9.1 Wiring diagram LMO24.255... (B55-2H/B65-2H)

9.2 Wiring diagram LMO24.255... (B55-2H,R/B65-2H,R)

9.3 List of components /LMO24.255... (B55-2H,R/B65-

	2H,R)	P2	Time meter, high capacity	ХЗ	Plug-in contact "Euro" burner
A1	Burner control		(optional)	X4	Plug-in contact "Euro", boiler
B1	Photoresistor	S1 S2	Operating switch Operating switch, high/low	X5	Plug-in contact "Euro" high/ low burner
F1 F2	Operating fuse Operating fuse		capacity	X6	Plug-in contact "Euro", high/
F3	Operating fuse	S3 S4	Operation thermosta Temperature limiter	X7	low boiler Plug-in contact "Euro"
H1 H2	Alarm lamp Signal lamp (optional)	S5	Micro switch for hinged door		3-phase, burner
H5	Alarm signal 230V	S6	S6 Control thermostat, high/	X8	Plug-in contact "Euro", 3-phase, boiler
K1	Thermal overload protection	S7	Main switch 3-fas	Y1	Solenoid valve 1
M1	Burner motor	S20 T1	Main switch 1-fas Ignition transformer	Y2 Y1	Solenoid valve 2 Magnetventil 1
M2 P1	Damper motor Time meter, low capacity	X1 X2	Connection terminal board Earth terminal	Y2	Magnetventil 2
	(optional)	/\Z	Latti terriira		

9.3.1 Function LMO24

1 Switch on operating switch and twin thermostat

A spark is formed. The air damper motor opens the damper to low load position. The burner motor starts, the prepurge goes on till the prepurge period expires and the solenoid valve 1 opens (2).

2. Solenoid valve 1 opens

Oil mist is formed and ignited. The photocell indicates a flame. The ignition spark goes out after flame indication (See Technical data oil burner control).

3. The safety time expires

- a If no flame is established before this time limit the control cuts out. If for some reasons the flame disappears after this time limit, the
- b burner will make an attempt to re-start.

4 High/Low thermostat ON

The burner is in operating position and can now change between full load and low load.

4-5 **Operating position**

If the burner operation is interrupted by means of the main switch or the thermostat, a new start takes place when the conditions in accordance with point 1 are fulfilled.

The oil burner control cuts out

A red lamp in the control is lit. Press the reset button and the burner re-starts.

Technical data oil burner control	LMO24.255
Pre-ignition time:	25 s
Pre-purge time:	26 s
Post-ignition time:	5 s
Safety lock-out time:	< 5 s
Reset time after lockout:	<1s
Reaction time on flame failure:	< 1 s
Ambient temperature:	-20 - +60°C
Min. current with flame established:	45 μA dc
Max. photo current at start:	5,5 µA dc

If S6 is missing connection between T6 and T8. Mains connection and fuse in accordance with local regulations.

9.4 Colour codes LMO24

When the burner starts, the light in the reset switch indicates the normal sequence, and also indicates whether something abnormal is happening as per the following table:

Preheater in operation	Solid yellow
Ignition switched on	Flashing yellow
Normal operation	Solid green
Operation, poor flame signal	Flashing green
Undervoltage	Flashing yellow-red
Fault, alarm	Solid red
False light	Flashing red-green
Communication mode	Fluttering red

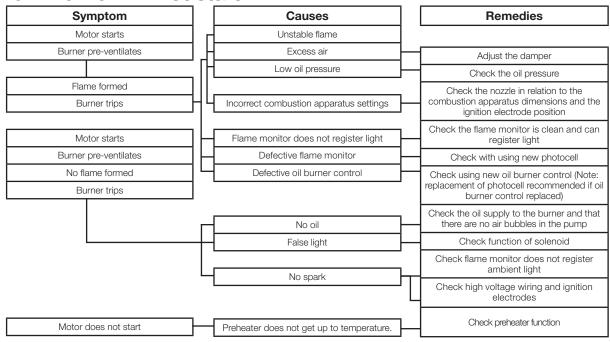
9.5 Fault codes LMO24

When the red light for a blocked relay box comes on, you can get information about what has caused the problem by pressing and holding the reset button for 3 seconds.

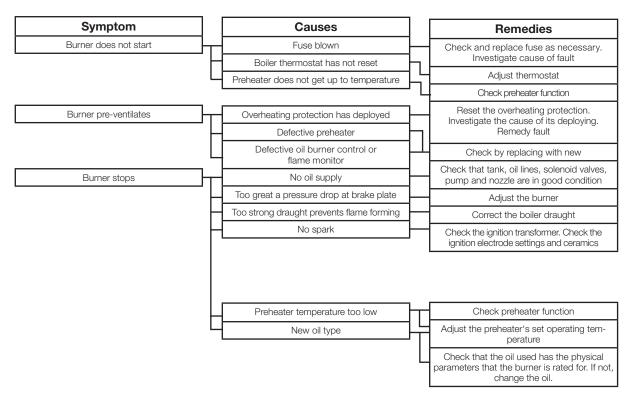
The number of flashes below is repeated with a pause in between.

2 flashes	No flame signal when safety time expires
4 flashes	False light during start
7 flashes	3 x Losses of flame during operation
8 flashes	Time-out for preheater *
10 flashes	Incorrect wiring, internal fault or simultaneous occurrence of two faults

^{*} In order for this fault code to occur, the preheater shall not reach its cut-off temperature within 10 mins. from switch on.

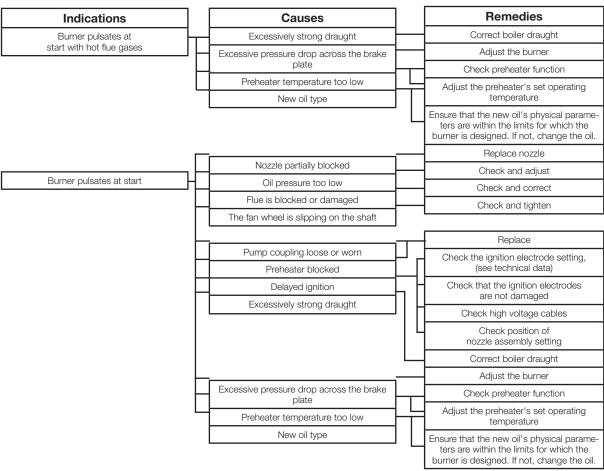

To return to normal operation: Press the reset button for 1 second.

If the reset button is instead kept pressed a second time for at least 3 seconds, you can, via an interface, obtain the corresponding information on a computer or flue gas analyser.

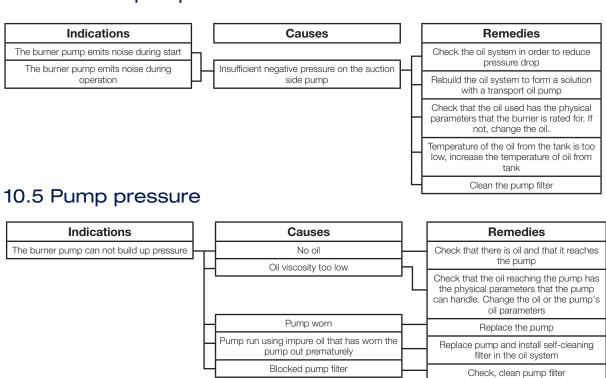

To return to normal operation: Press the reset button for 1 second

10. Fault Location

10.1 Burner will not start



10.2 Burner will not start after normal use



165 105 09

10.3 Delayed ignition

10.4 Noise in pump

11. Log of flue gas analysis

Owner	Adresss	Adresss			Tel. no:	
Installation				Tel. no:		
Boiler	ı					
Туре	Make			Power	kW	
Bentone Burner						
Туре	Model		Serial no.		Fuel	
	I				I	
	Step 1		Step 2		Step 3	
Draught in fireplace						
Fan Press mbar						
Filter smoke number						
CO ₂						
O ₂						
NOx						
co						
Flue gas temp. °C						
Setting brake disc						
Setting Air damper						
Pump pressure						
bar						
Nozzle						
Test performed / 20		Address				
Test performed by:		Postal addre	988			
Company name:		Tel. no:				

12. Oil burners maintenance instructions

General information

Keep the boiler room clean. Ensure that the boiler room has permanent fresh air intake. Switch off before dismantling the oil burner.

At hinged mounting, make sure that an automatic safety switch is fitted, so that the burner cannot start when theswing door is open.

Don't use the oil fired boiler to burn paper or rubbish, unless the boiler is especially fitted with a hinged door tomake this possible.

Don't fill tank while burner is working.

Starting precautions

Make sure that the oil tank is not empty

Make sure that the valves on oil and water supply pipes
areopen.

Make sure that the boiler flue damper is open.

Make sure that the boiler thermostat is set at the correct temperature.

Switch on the current. Most relay systems have a delayed action so that the burner will not start for perhaps 20 seconds.

With heavy oil the delay will be longer as the burner will notstart until the oil in the preheater reaches the required temperature.

If the burner will not start

Press the reset button on the relay. Check that the thermostats are correctly adjusted.

Don't forget the room thermostat, check that any fusesare intact and main switch is on.

If the burner starts but does not ignite

Make an attempt to start the burner.

Never make close repeated start attempts.

Don't restart the burner until the boiler is free from oil gases.

If the burner still does not ignite send for the service engineer.

When switching off during summer

Always use the main switch to cut out the burner even when adjusting the burner or cutting off the heating for ashort time. For longer periods of shut down, close all valves and the oil supply stop-cock.

Clean the filter and nozzle by washing in petrol or paraffin.

Make sure the filter medium is not damaged or defective. Protect electrical gear from damp.

Warning

Never stand too near or put your face to the inspection or fire door, when the burner is about to start.

Never use a naked flame to ignite oil if the electrical ignition fails.

Always wait for about 10 minutes for the unburnt gases to disperse before restarting the oil burner if it has failed to ignite previously.

Installed	by:		
••••		 	
Tel:		 	

EU Declaration of conformity

Bentone Oilburners

Туре			
BF 1	ST 133	B 10	B 55
ST 97	ST 146	B 30	B 65
ST 108	B 1	B 40	B 70
ST 120	B 2	B 45	B 80

This declaration of conformity is issued under the sole responsibility of the manufacturer. The object of the declaration described above is in conformity with:

Machinery Directive 2006/42/EC

EMC 2014/30/EU

Restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU

References to the relevant harmonised standards used or references to the other technical specifications in relation to which conformity is declared:

EN 267:2009+A 1:2011

(excluded Annex J/K) Automatic forced draught burners for liquid fuels

Additional information can be downloaded at:

www.bentone.com

Enertech AB Box 309 S-341 26 LJUNGBY

Ljungby September 26rd, 2017

Håkan Lennartsson

Managing Director

Enertech AB

