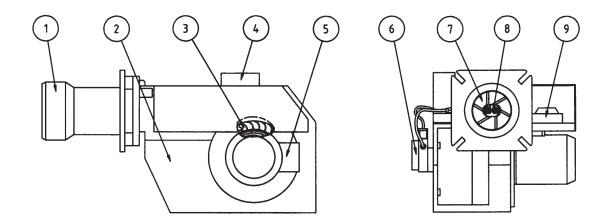
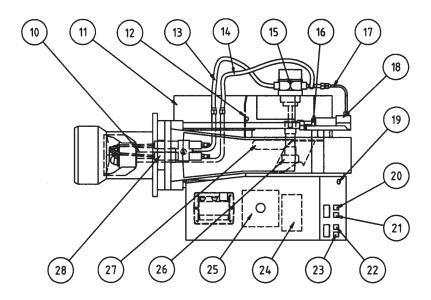


Installation- and maintenance instruction


B 45 A2.2



1. Table of contents

1. Viktio	gt att tänka på!	
2. Insta	llation	7
2.1	Handling and lifting instruktion	7
3. Desc	ription	8
3.2		
4. Tech	nical data	ç
4.3	Type designation B45A2	
5. Gene	eral instructions	10
5.4	General rules	
5.5	Installation instructions	
5.6	Adjustment of burner	
5.7	Condensation in chimney	
5.8	Pump adjustment	
5.9	Maintenance	
5.10	Oil supply	1
6. Air a	djustment with damper motor	12
	Low capacity:	
	Full capacity:	
6.13	Releasing button	12
7. Main	tenance of oil burner	13
8. Elect	ric equipment	14
	Oil burner control: LMO24	
	Colour codes LMO14/24	
	Fault codes LMO14/24	
9. Instru	uctions pump type	
Su	ntec A2L 65C - 75C	17
9.17	Nozzle table	2
10. Fa	ult Location	26
	Burner will not start	
	Burner will not start after normal use	
	Delayed ignition, burner starts; pulsation	
	Delayed ignition	
	Noise in pump	
10.23	Pump pressure	27

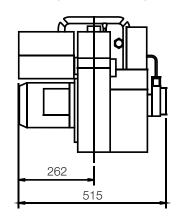
3. Description

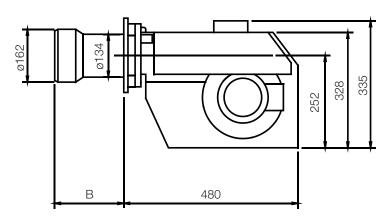
3.1 Components

- 1. Flame cone
- 2. Fan housing
- 3. Fan wheel
- 4. Damper motor
- 5. Motor
- 6. Pump
- 7. Shrouded disc
- 8. Nozzle
- 9. Ignition transformer
- 10. Nozzle assembly
- 11. Air intake

- 12. Air damper
- 13. Connecting pipe Stage 1
- 14. Connecting pipe Stage 2
- 15. Solenoid valves
- 16. Nozzle assembly adjustment
- 17. Connecting pipe, pumpadjustment device
- 18. Adjustment device, Nozzle assembly adjustment
- 19. Fuse
- 20. Indicating lamp Stage 2

- 21. Switch I-II
- 22. Indicating lamp Stage 1
- 23. Switch 0-I
- 24. Contactor
- 25. Control box
- 26. Drive coupling
- 27. Conical shield plate
- 28. Ignition electrodes



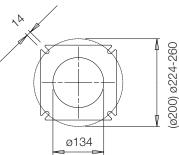

The burners must not be fired without fitting nozzles supplied

171 205 44

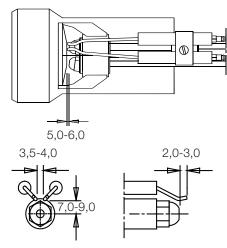
4. Technical data

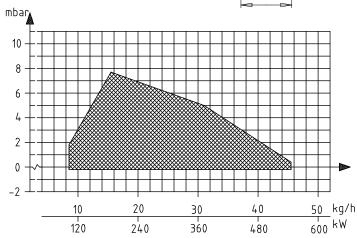
4.1 Type designation B45A2

	Length of burner tube	Flange
		Measure B
B45A2	270	238
B45A2	370	338


Output range and nozzles recommended

	Oil capacity	Capa	acity	Reco	ommended i	Recommended	
							Pump pressure
	kg/h	kW	Mcal/h	Angle	Danfoss	Monarch	Bar
B45A2	8,5-45,5	101-540	87-464	45° - 60°	S, B	R, PLP	14 bar


The net calorific value of 11,86 kWh/kg for light oil has been used.


Recommended nozzle

Because of different boiler types existing on the market, with varying combustion chamber designs, it is not possible to state a definite spray angle or spray pattern. Note that the spray angle and the spray pattern change with the pump pressure.

Electrode adjustment

5. General instructions

5.1 General rules

The installation of an oil burner should be carried out in accordance with local regulations. The installer of the burner must therefore be aware of all regulations relating to oil and combustion.

Only oil suitable for the burner should be used and then in combination with a suitable oil filter before the oil pump of the burner.

If the burner is replacing an existing burner make sure that the oil filter is replaced or cleaned. The installation must only be undertaken by experienced personnel. Care should be taken by the installer to ensure that no electrical cables or fuel/gas pipes are trapped or damaged during installation or service/maintenance.

5.2 Installation instructions

General installation instructions accompany the burner and should be left in a prominent place adjacent to the burner.

5.3 Adjustment of burner

The burner is from the factory pre-set to an average value that must then be adjusted to the boiler in question.

All burner adjustments must be made in accordance with boiler manufacturers instructions. These must include the checking of flue gas temperatures, average water temperature and CO2 or O2 concentration.

To adjust the combustion device, start by increasing the air volume and the nozzle assembly somewhat. When the burner starts it is burning with excess air and smoke number 0. Reduce the nozzle assembly adjustment until soot occurs, and then increase the adjustment to make the soot disappear again. Then the volume of air is reduced until soot occurs and increased again to reach a combustion free of soot.

By this procedure an optimum adjustment is obtained. If larger nozzles are used the preadjustment of both the air volume and the nozzle assembly must be increased.

A whistling sound may be heard which can be eliminated or reduced as follows: Increase the nozzle assembly adjustment somewhat. The CO2-content and consequently the air volume will then be reduced.

5.4 Condensation in chimney

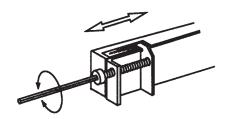
A modern burner works with less excess air and often also with smaller nozzles than older models. This increases the efficiency but also the risk of condensation in the chimney. The risk increases if the area of the chimney flue is too large. The temperature of the flue gases should exceed 60°C measured 0,5 metres from the chimney top. Measures to raise the temperature: Insulate the chimney in cold attics Install a tube in the chimney Install a draught regulator (dilutes the flue gases during operation and dries them up during standstill) Increase the oil quantity Raise the flue gas temperature by removing turbulators, if any, in the boiler.

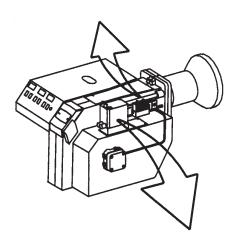
5.5 Pump adjustment

See separate description.

5.6 Maintenance

The boiler/burner should be examined regularly for any signs of malfunction or oil leakage.


5.7 Oil supply


The oil line should be dimensioned in accordance with the pump manufacturer's instruction. In the suction line to the burner a filter should be mounted to prevent any particles in the oil from reaching the burner. If the installation consists of several burners each one should have its own suction line from the tank or a circulation system should be used.

The temperature in the oil line should be kept as constant as possible. Avoid exposing the line to excessive cold which may cause blockages of paraffin deposits.

The oil pipe and electric cable should be fitted so that the burner can be placed on the floor for inspection of the combustion device.

Adjustment of nozzle assembly

Air adjustment

See page "Air adjustment with damper motor".

6. Air adjustment with damper motor

The damper motor turns the damper between 3 preset positions: fully closed, low capacity and high capa-city. These positions are controlled in the motor by cams which are set by means of the coloured disks. In addition there is a black disk controlling the connection of solenoid valve 2.

If the air volume needs changing: Remove the cover from the damper motor and change the position of the cams by turning them by hand. See fig.

6.1 Low capacity:

Adjust the operating switch to high capacity (II).

Reduce the air volume:

Turn orange cam towards 0°.

Increase the air volume:

Turn orange cam towards 90°.

Adjust the operating switch back to low capacity and check.

6.2 Full capacity:

Adjust the operating switch to low capacity (I).

Reduce the air volume:

Turn red cam towards 0°.

Increase the air volume: Turn red cam towards 90°.

If the red cam is moved, change the black cam as much. Adjust the opera-ting switch back to high capacity and ensure that the correct air volume has been obtained.

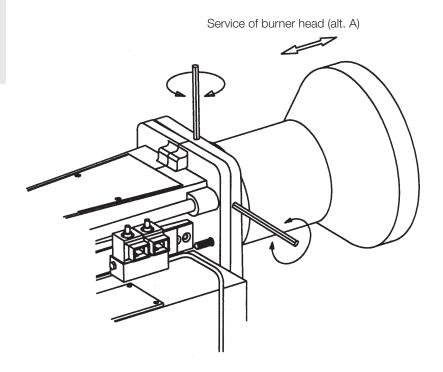
Note!

The blue cam is the limit position for fully closed damper and it is normally not necessary to change it.

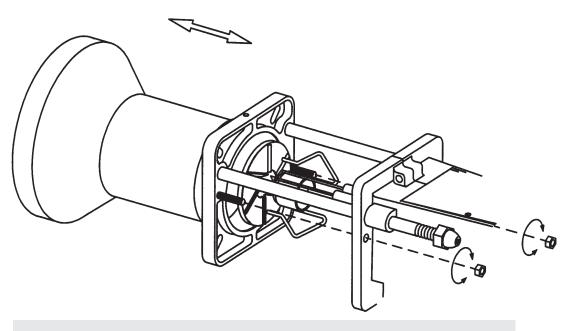
6.3 Releasing button

By pressing the button and snapping it down, the motor will be released and the damper can easily be turned. This function facilitates an exchange of damper motor.

Solenoid valve High capacity (black)
High capacity (red)
Low capacity
(orange)
Closed damper (blue)


Releasing button

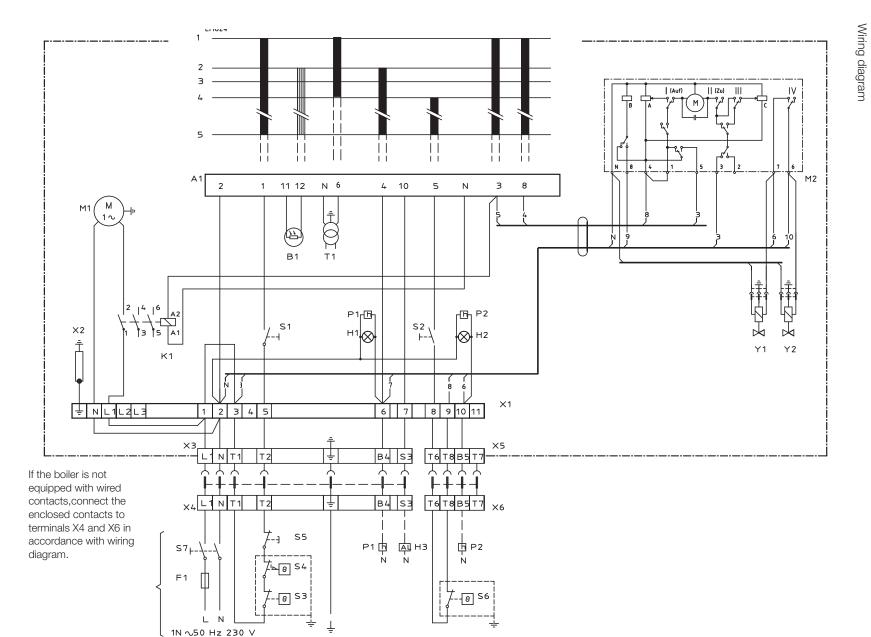
N.B. The upper position is the standard position


171 315 07

7. Maintenance of oil burner

Before doing any service switch off power at the main switch and cut off the oil supply.

Service of burner head (alt. B)



For maintenance of the brake plate, nozzles, electrodes etc, when using a long design of the burner tube, you have to remove the nozzle assembly from the connecting pipe and move the assembly backwards in the fan housing (from the boiler).

171 305 34

8. Electric equipment

3.1 Oil burner control: LMO24...

Electric equipment

Oil burner control: LMO24...

List of components

A1	Oil burner control	S4	Temperature limiter
B1	Photoresistor	S5	Micro switch for hinged door
F1	Fuse	S6	Control thermostat, high/low
H1	Lamp, low capacity	S7	Main switch
H2	Lamp, high capacity	T1	Ignition transformer
НЗ	Lamp, lock-out signal 230 V	X1	Connection terminal board
K1	Thermal overload protection	X2	Earth terminal
M1	Burner motor	X3	Plug-in contact, burner
M2	Damper motor SQN75.244A21B	X4	Plug-in contact, boiler
P1	Time meter, low capacity (optional)	X5	Plug-in contact high/low capacity burner
P2	Time meter, high capacity (optional)	X6	Plug-in contact high/low capacity boiler
S1	Operating switch	Y1	Solenoid valve 1
S2	Operating switch, high/low capacity	Y2	Solenoid valve 2
S3	Control thermostat		

Max loading K1 Connection A1,A2 / 95, 96 / 97, 98 Max 0,2A/15W If S6 is missing connection between T6 and T8. Mains connection and fuse in accordance with local regulations.

Function

1. Switch on operating switch and twin thermostat

A spark is formed. The air damper motor opens the damper to low load position.

The burner motor starts, the prepurge goes on till the prepurge period expires and the solenoid valve 1 opens (2).

2. Solenoid valve 1 opens

Oil mist is formed and ignited. The photocell indicates a flame.

3. The safety time expires

- a. If no flame is established before this time limit the control cuts out.
- If for some reasons the flame disappears after this time limit, the burner will make an attempt to re-start.

4. High/Low thermostat ON

The burner is in operating position and can now change between full load and low load.

4-5. Operating position

If the burner operation is interrupted by means of the main switch or the thermostat, a new start takes place when the conditions in accordance with point 1 are fulfilled.

The oil burner control cuts out

A red lamp in the control is lit. Press the reset button and the burner re-starts.

Control of photo current

Current through photo unit is measured with a d.c. ammeter (a moving coil instrument connected in series with the photo unit).

Electric equipment

	LMO24
Pre-ignition time:	25 s
Pre-purge time:	26 s
Post-ignition time:	5 s
Safety lock-out time:	<5s
Reset time after lockout:	<1s
Reaction time on flame failure:	<1s
Ambient temperature:	-20 - +60°C
Min. current with flame established:	45 µA
Max. photo current at start:	5,5 µA

8.2 Colour codes LMO14/24

When the burner starts, three signal lights in the reset switch indicate the normal sequence, as well as provide indication if something abnormal is happening in accordance with the following table:

Preheater in operation	Solid yellow
Ignition switched on	Flashing yellow
Normal operation	Solid green
Operation, poor flame signal	Flashing green
Undervoltage	Flashing yellow-red
Fault, alarm	Solid red
False light	Flashing red-green
Communication mode	Fluttering red

8.3 Fault codes LMO14/24

When the red light for a blocked relay box comes on, you can get information about what has caused the problem by pressing and holding the reset button for 3 seconds.

The number of flashes below is repeated with a pause in between.

2 flashes	No flame signal when safety time expires
4 flashes	False light during start
7 flashes	3 x Losses of flame during operation
8 flashes	Time-out for preheater *
10 flashes	Incorrect wiring, internal fault or simultaneous occurrence of two faults

^{*} In order for this fault code to occur, the preheater shall not reach its cut-off temperature within 10 mins. from switch on.

To return to normal operation: Press the reset button for 1 second.

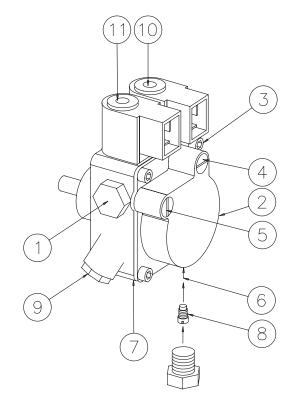
If the reset button is instead kept pressed a second time for at least 3 seconds, you can, via an interface, obtain the corresponding information on a computer or flue gas analyser.

To return to normal operation: Press the reset button for 1 second

9. Instructions pump type Suntec A2L 65C - 75C

Technical data

One or two-pipe system.


Viscosity range: 2-12 mm²/S
Pressure range: 8-15 bar
Rated voltage of coil: 220/240V

50/60 Hz

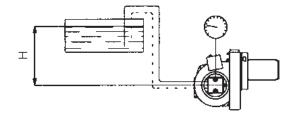
Oil temperature: max 60°C

Components

- 1. Nozzle outlet G 1/8" Stage 2
- 2. Pressure gauge port G 1/8"
- 3. Nozzle outlet G 1/8" Stage 1
- 4. Pressure gauge port G 1/8"
- 5. Vacuum gauge port G 1/8"
- 6. Return line G 1/4" and internal bypass plug
- 7. Suction line G 1/4"
- 8. Return plug
- 9. Pressure adjustment
- 10. Solenoid valve 1
- 11. Solenoid valve 2

Suction line tables

The suction line tables consist of theoretically calculated values where the pipe dimensions and oil velocity have been matched so that tur-bulences will not occur. Such tur-bulences will result in increased pressure losses and in acoustic noise in the pipe system. In addition to drawn copper piping a pipe system usually comprises 4 elbows, a non-return valve, a cut-off valve and an external oil filter.

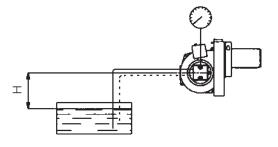

The sum of these individual resi-stances is so insignificant that they can be disregarded. The tables do not include any lengths exceeding 100 m as experience shows that longer lengths are not needed.

The tables apply to a standard fuel oil of normal commercial quality according to current standards. On commis- sioning with an empty tube system the oil pump should not be run without oil for more than 5 min. (a condition is that the pump is being lubricated during operation).

The tables state the total suction line length in metres at a nozzle capacity of 9,5 Gph. Max. permissible pressure at the suction and pressure side is 2,0 bar

9.3.1 Overhead Tank

1-pipe system									
Height	Height Pipe diameter								
Н	ø6 mm	ø8 mm	ø10 mm						
m	m	m	m						
4,0	45	144	150						
3,0	39	127	150						
2,0	34	109	150						
1,0	28	92	150						
0,5	26	83	150						
0,0	23	74	150						



Two-pipe system								
Height Pipe diameter								
Н	ø8 mm	ø10 mm	ø12 mm	ø14 mm				
m	m	m	m	m				
4,0	42	108	150	150				
3,0	36	94	150	150				
2,0	31	81	150	150				
1,0	26	68	144	150				
0,5	23	61	130	150				
0,0	20	54	116	150				

9.3.2 Underlying Tank

One-pipe system
With an underlying tank a 1-pipe-system is not recommended

The object of the second									
Two-pipe system									
Height		Pipe diameter							
Н	ø8 mm	ø10 mm	ø12 mm	ø14 mm					
m	m	m	m	m					
0,0	20	54	116	150					
-0,5	17	48	103	150					
-1,0	15	41	89	150					
-2,0	9	28	61	116					
-3,0	4	14	33	65					
-4,0	0	0	6	14					

Instructions pump type Suntec A2L 65C - 75C

Pump operating principle for A2L 65C - 75C

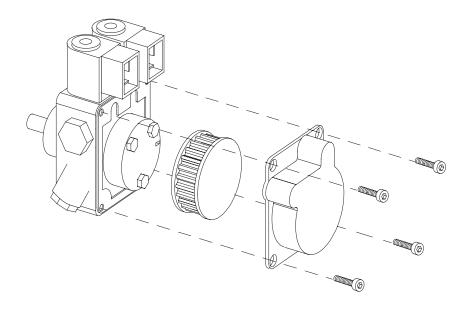
The **SUNTEC A2L** oil pump has two nozzle outlets. It incorporates two blocking solenoid valves with in-line-cut-off function, one for each nozzle outlet

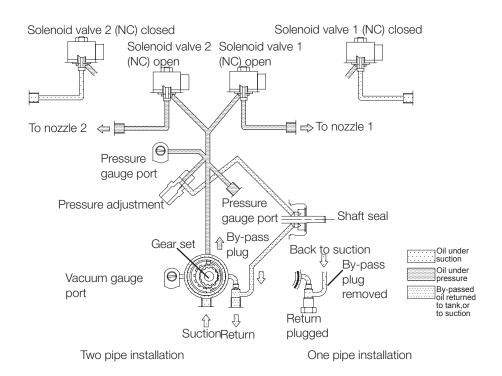
The gear set draws oil from the tank through the built-in filter and transfers it to the nozzle line via the cut-off solenoid valves. A pressure regulating valve is used to dump all oil which is not required at the nozzle.

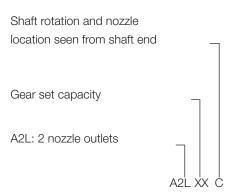
In one-pipe operation, the oil which does not go through the nozzle lines is returned directly to the gear inlet and the suction line flow is equal to the sum of the 2 nozzle flows. In two-pipe operation, the by-pass plug must be fitted in the return port, which ensures that the oil dumped by the regulating valve is returned to the tank and the suction line flow is equal to the gear set capacity.

Bleed

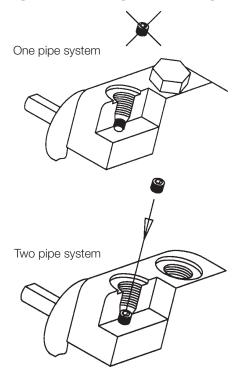
Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, a high pressure connection must be loosened until the air is evacuated from the system.


Cut-Off


The solenoid valves of the A2L pump are of the "normally closed" type and are situated in the nozzle lines. This design ensures extremely fast res-ponse and the switching can be sel-ected according to the burner opera-ting sequence and is independant of motor speed.


When the solenoids are non-activated, the valves are closed and all oil pressurised by the gear set passes through the regulator to suction or to the return line, depending upon pipe arrangement.

As soon as the solenoids are activat-ed, oil passes to the nozzle lines at the pressure set by the pressure regulating valve.


Exchange of filter

Mounting/dismounting return plug

9.1 Nozzle table

Pump pressure bar

Gph	n 8			9			10			11		
	kg/h	kW	Mcal/h									
0,40	1,33	16	13	1,41	17	14	1,49	18	15	1,56	18	16
0,50	1,66	20	17	1,76	21	18	1,86	22	19	1,95	23	20
0,60	2,00	24	20	2,12	25	22	2,23	26	23	2,34	28	24
0,65	2,16	26	22	2,29	27	23	2,42	29	25	2,54	30	26
0,75	2,49	29	25	2,65	31	27	2,79	33	28	2,93	35	30
0,85	2,83	33	29	3,00	36	31	3,16	37	32	3,32	39	34
1,00	3,33	39	34	3,53	42	36	3,72	44	38	3,90	46	40
1,10	3,66	43	37	3,88	46	39	4,09	48	42	4,29	51	44
1,20	3,99	47	41	4,24	50	43	4,47	53	46	4,68	55	48
1,25	4,16	49	42	4,40	52	45	4,65	55	47	4,88	58	50
1,35	4,49	53	46	4,76	56	48	5,02	59	51	5,27	62	54
1,50	4,98	59	51	5,29	63	54	5,58	66	57	5,85	69	60
1,65	5,49	65	56	5,82	69	59	6,14	73	63	6,44	76	66
1,75	5,82	69	59	6,18	73	63	6,51	77	66	6,83	81	70
2,00	6,65	79	68	7,06	84	72	7,45	88	76	7,81	93	80
2,25	7,49	89	76	7,94	94	81	8,38	99	85	8,78	104	89
2,50	8,32	99	85	8,82	105	90	9,31	110	95	9,76	116	99
2,75	9,15	108	93	9,71	115	99	10,24	121	104	10,73	127	109
3,00	9,98	118	102	10,59	126	108	11,16	132	114	11,71	139	119
3,50	11,65	138	119	12,35	146	126	13,03	154	133	13,66	162	139
4,00	13,31	158	136	14,12	167	144	14,89	176	152	15,62	185	159
4,50	14,97	177	153	15,88	188	162	16,75	198	171	17,57	208	179
5,00	16,64	197	170	17,65	209	180	18,62	221	190	19,52	231	199
5,50	18,30	217	187	19,42	230	198	20,48	243	209	21,47	255	219
6,00	19,97	237	204	21,18	251	216	22,34	265	228	23,42	278	239
6,50	21,63	256	220	22,94	272	234	24,20	287	247	25,37	301	259
7,00	23,29	276	237	24,71	293	252	26,06	309	266	27,33	324	279
7,50	24,96	296	254	26,47	314	270	27,92	331	285	29,28	347	298
8,00	26,62	316	271	28,24	335	288	29,79	353	304	31,23	370	318
8,50	28,28	335	288	30,00	356	306	31,65	375	323	33,18	393	338
9,00	29,95	355	305	31,77	377	324	33,59	398	342	35,14	417	358

The table applies to oil with a viscosity of 4.4 mm 2 /s at a density of 830 kg/m 3 .

Pump pressure bar

Gph	12			13			14			15		
	kg/h	kW	Mcal/h									
0,40	1,63	19	17	1,70	20	17	1,76	21	18	1,82	21	18
0,50	2,04	24	21	2,12	25	22	2,20	26	22	2,28	27	23
0,60	2,45	29	25	2,55	30	26	2,64	31	27	2,73	32	28
0,65	2,65	31	27	2,75	33	28	2,86	34	29	2,96	35	30
0,75	3,08	36	31	3,18	38	32	3,30	39	34	3,42	40	35
0,85	3,47	41	35	3,61	43	37	3,74	44	38	3,87	46	39
1,00	4,08	48	42	4,24	50	43	4,40	52	45	4,56	54	46
1,10	4,48	53	46	4,67	55	48	4,84	57	49	5,01	59	51
1,20	4,89	58	50	5,09	60	52	5,29	63	54	5,47	65	56
1,25	5,10	60	52	5,30	63	54	5,51	65	56	5,70	68	58
1,35	5,50	65	56	5,73	68	58	5,95	70	61	6,15	73	63
1,50	6,11	72	62	6,36	75	65	6,60	78	67	6,83	81	70
1,65	6,73	80	69	7,00	83	71	7,27	86	74	7,52	89	77
1,75	7,14	85	73	7,42	88	76	7,71	91	79	7,97	94	81
2,00	8,18	97	83	8,49	101	86	8,81	104	90	9,12	108	93
2,25	9,18	109	94	9,55	113	97	9,91	117	101	10,26	122	105
2,50	10,19	121	104	10,61	126	108	11,01	130	112	11,39	135	116
2,75	11,21	133	114	11,67	138	119	12,11	144	123	12,53	148	128
3,00	12,23	145	125	12,73	151	130	13,21	157	135	13,67	162	139
3,50	14,27	169	145	14,85	176	151	15,42	183	157	15,95	189	163
4,00	16,31	193	166	16,97	201	173	17,62	209	180	18,23	216	186
4,50	18,35	217	187	19,10	226	195	19,82	235	202	20,51	243	209
5,00	20,39	242	208	21,22	251	216	22,03	261	225	22,79	270	232
5,50	22,43	266	229	23,34	277	238	24,23	287	247	25,07	297	256
6,00	24,47	290	249	25,46	302	260	26,43	313	269	27,49	326	280
6,50	26,51	314	270	27,58	327	281	28,63	339	292	29,63	351	302
7,00	28,55	338	291	29,70	352	303	30,84	366	314	31,91	378	325
7,50	30,59	363	312	31,83	377	324	33,04	392	337	34,19	405	349
8,00	32,63	387	333	33,95	403	346	35,25	418	359	36,47	432	372
8,50	34,66	411	353	36,07	428	368	37,45	444	382	38,74	459	395
9,00	36,71	435	374	38,19	453	389	39,65	470	404	41,02	486	418

The table applies to oil with a viscosity of 4.4 mm $^2\!/\!s$ at a density of 830 kg/m $^3.$

Pump pressure bar

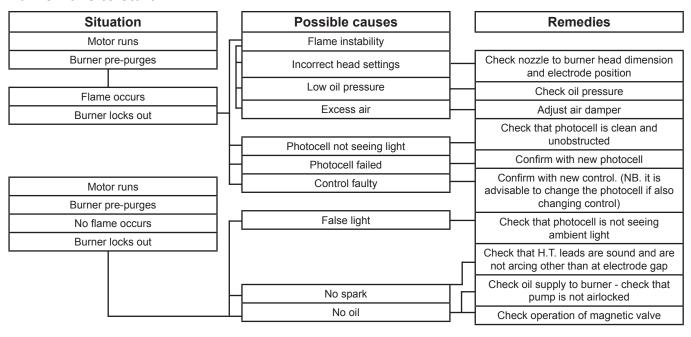
Gph		16			17			18	
	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
1,00	4,71	56	48	4,85	57	49	4,99	59	51
1,10	5,18	61	53	5,34	63	54	5,49	65	56
1,20	5,65	67	58	5,82	69	59	5,99	71	61
1,25	5,89	70	60	6,07	72	62	6,24	74	64
1,35	6,36	75	65	6,55	78	67	6,74	80	69
1,50	7,06	84	72	7,27	86	74	7,48	89	76
1,65	7,77	92	79	8,01	95	82	8,24	98	84
1,75	8,24	98	84	8,49	101	87	8,78	104	90
2,00	9,42	112	96	9,71	115	99	9,99	118	102
2,25	10,60	126	108	10,92	130	111	11,24	133	115
2,50	11,77	140	120	12,13	144	124	12,48	148	127
2,75	12,95	154	132	13,35	158	136	13,73	163	140
3,00	14,13	168	144	14,56	173	148	14,98	178	153
3,50	16,49	196	168	16,99	201	173	17,48	207	178
4,00	18,84	223	192	19,42	230	198	19,98	237	204
4,50	21,20	251	216	21,84	259	223	22,47	266	229
5,00	23,55	279	240	24,27	288	247	24,97	296	255
5,50	25,91	307	264	26,70	317	272	27,47	326	280
6,00	28,27	335	288	29,13	345	297	29,97	355	306
6,50	30,62	363	312	31,55	374	322	32,46	385	331
7,00	32,98	391	336	33,98	403	374	34,96	415	356
7,50	35,33	419	360	36,41	432	371	37,46	444	382
8,00	37,69	447	384	38,80	460	396	39,96	474	407
8,50	40,04	475	408	41,26	489	421	42,45	503	433
9,00	42,40	503	432	43,69	518	446	44,95	533	458
9,50	44,75	531	456	46,11	547	470	47,45	563	484
10,00	47,11	559	480	47,11	559	480	49,94	592	509
11,00	51,82	615	528	53,40	633	545	54,94	652	560
12,00	56,53	670	576	58,25	691	594	59,93	711	611
14,00	65,95	778	669	67,96	806	693	69,92	829	713
16,00	75,38	894	769	77,67	921	792	79,91	948	815

The table applies to oil with a viscosity of 4,4 mm 2 /s (cSt) with density 830 kg/m 3 .

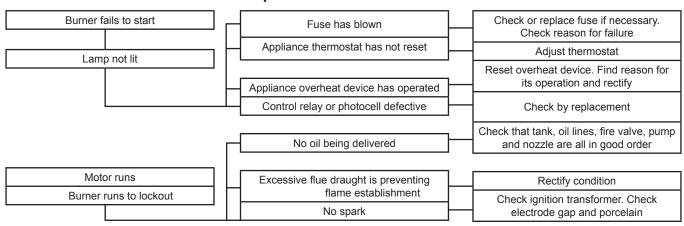
Pump pressure bar

Gph		19			20			21	
	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
1,00	5,13	61	52	5,26	62	54	5,40	64	55
1,10	5,64	67	57	5,79	69	59	5,93	70	60
1,20	6,16	73	63	6,32	75	64	6,47	77	66
1,25	6,41	76	65	6,58	78,	67	6,74	80	69
1,35	6,93	82	71	7,11	84	72	7,28	86	74
1,50	7,69	91	78	7,89	93	80	8,08	96	82
1,65	8,47	100	86	8,69	103	89	8,90	105	91
1,75	8,98	106	92	9,21	109	94	9,44	112	96
2,00	10,26	122	105	10,53	125	107	10,79	128	110
2,25	11,55	137	118	11,85	140	121	12,14	144	124
2,50	12,83	152	131	13,16	156	134	13,49	160	138
2,75	14,11	167	144	14,48	171	148	14,84	176	151
3,00	15,39	182	157	15,79	187	161	16,18	192	165
3,50	17,96	213	183	18,43	218	188	18,89	224	193
4,00	20,53	243	209	21,06	250	215	21,59	256	220
4,50	23,09	274	235	23,69	281	242	24,28	288	248
5,00	25,65	304	262	26,33	312	268	26,98	320	275
5,50	28,22	335	288	28,96	343	295	29,68	352	303
6,00	30,79	365	314	31,59	374	322	32,38	384	330
6,50	33,35	395	340	34,22	406	349	35,07	416	358
7,00	35,92	426	366	36,86	437	376	37,77	448	385
7,50	38,49	456	392	39,49	468	403	40,47	480	413
8,00	41,05	487	419	42,12	499	429	43,17	512	440
8,50	43,62	517	445	44,75	531	456	45,87	544	468
9,00	46,18	548	471	47,39	562	483	48,57	576	495
9,50	48,75	578	497	50,02	593	510	51,26	608	523
10,00	51,32	609	523	52,66	624	537	53,96	640	550
11,00	56,45	669	576	57,92	687	591	59,36	704	605
12,00	61,58	730	628	63,19	749	644	64,76	768	660
14,00	71,84	852	733	73,72	874	752	75,55	896	770
16,00	82,11	974	837	84,25	999	859	86,34	1024	880

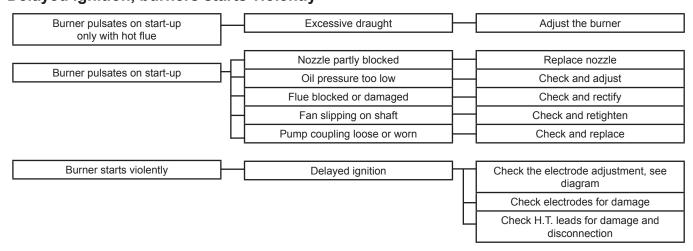
The table applies to oil with a viscosity of 4,4 mm²/s (cSt) with density 830 kg/m³.


Pump pressure bar

Gph		22			23		24		
	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h	kg/h	kW	Mcal/h
1,00	5,53	66	56	5,65	67	58	5,77	68	59
1,10	6,07	72	62	6,21	74	63	6,34	75	65
1,20	6,62	78	67	6,77	80	69	6,92	82	71
1,25	6,90	82	70	7,05	84	72	7,21	85	73
1,35	7,45	88	76	7,62	90	78	7,78	92	79
1,50	8,27	98	84	8,46	100	86	8,64	102	88
1,65	9,11	108	93	9,31	110	95	9,51	113	97
1,75	9,66	115	98	9,88	117	101	10,09	120	103
2,00	11,04	131	113	11,29	134	115	11,53	137	118
2,25	12,43	147	127	12,70	151	129	12,98	154	132
2,50	13,81	164	141	14,12	167	144	14,42	171	147
2,75	15,19	180	155	15,53	184	158	15,86	188	162
3,00	16,18	192	165	16,93	201	173	17,30	205	176
3,50	19,33	229	197	19,77	234	202	20,19	239	206
4,00	22,10	262	225	22,59	268	230	23,08	274	235
4,50	24,85	295	253	25,41	301	259	25,96	308	265
5,00	27,61	327	282	28,24	335	288	28,84	342	294
5,50	30,38	360	310	31,06	368	317	31,73	376	324
6,00	33,14	393	338	33,89	402	346	34,62	411	353
6,50	35,90	426	366	36,70	435	374	37,49	445	382
7,00	38,56	457	393	39,53	469	403	40,38	479	412
7,50	41,42	491	422	42,35	504	434	43,26	513	441
8,00	44,19	524	451	45,18	536	461	46,15	547	471
8,50	46,95	557	479	48,00	569	489	49,03	581	500
9,00	49,71	589	507	50,83	603	518	51,92	616	529
9,50	52,47	622	535	53,65	636	547	54,80	650	559
10,00	55,23	655	563	56,47	670	576	57,69	684	588
11,00	60,76	721	620	62,12	737	633	63,46	753	647
12,00	66,28	786	676	67,77	804	691	69,23	821	706
14,00	77,33	917	789	79,09	938	806	80,77	958	824
16,00	88,37	1048	901	90,36	1072	921	92,30	1095	941


The table applies to oil with a viscosity of 4,4 mm 2 /s (cSt) with density 830 kg/m 3 .

FAULT LOCATION


Burner fails to start

Burner fails to start after normal operation

Delayed ignition, burners starts violently

EU Declaration of conformity

Bentone Oilburners

Туре			
BF 1	ST 133	B 10	B 55
ST 97	ST 146	B 30	B 65
ST 108	B 1	B 40	B 70
ST 120	B 2	B 45	B 80

This declaration of conformity is issued under the sole responsibility of the manufacturer. The object of the declaration described above is in conformity with:

Machinery Directive 2006/42/EC

EMC 2014/30/EU

Restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU

References to the relevant harmonised standards used or references to the other technical specifications in relation to which conformity is declared:

EN 267:2009+A 1:2011

(excluded Annex J/K) Automatic forced draught burners for liquid fuels

Additional information can be downloaded at:

www.bentone.com

Enertech AB Box 309 S-341 26 LJUNGBY

Ljungby September 26rd, 2017

Håkan Lennartsson

Managing Director

Enertech AB

OIL BURNERS MAINTENANCE INSTRUCTIONS

General information

Keep the boiler room clean. Ensure that the boiler room has permanent fresh air intake. Switch off before dismantling the oil burner.

At hinged mounting, make sure that an automatic safety switch is fitted, so that the burner cannot start when theswing door is open.

Don't use the oil fired boiler to burn paper or rubbish, unless the boiler is especially fitted with a hinged door tomake this possible.

Don't fill tank while burner is working.

Starting precautions

Make sure that the oil tank is not empty

Make sure that the valves on oil and water supply pipes
areopen.

Make sure that the boiler flue damper is open.

Make sure that the boiler thermostat is set at the correct temperature.

Switch on the current. Most relay systems have a delayed action so that the burner will not start for perhaps 20 seconds.

With heavy oil the delay will be longer as the burner will notstart until the oil in the preheater reaches the required temperature.

If the burner will not start

Press the reset button on the relay. Check that the thermostats are correctly adjusted.

Don't forget the room thermostat, check that any fusesare intact and main switch is on.

If the burner starts but does not ignite

Make an attempt to start the burner.

Never make close repeated start attempts.

Don't restart the burner until the boiler is free from oil gases.

If the burner still does not ignite send for the service engineer.

When switching off during summer

Always use the main switch to cut out the burner even when adjusting the burner or cutting off the heating for ashort time. For longer periods of shut down, close all valves and the oil supply stop-cock.

Clean the filter and nozzle by washing in petrol or paraffin.

Make sure the filter medium is not damaged or defective. Protect electrical gear from damp.

Warning

Never stand too near or put your face to the inspection or fire door, when the burner is about to start.

Never use a naked flame to ignite oil if the electrical ignition fails.

Always wait for about 10 minutes for the unburnt gases to disperse before restarting the oil burner if it has failed to ignite previously.

Installed	by:			
•••••		 	 	
Tel:		 	 	

