

Installation- and maintenance instruction

STG 146/1

Table of contents

1. Ger	neral Information	
2. Tec	hnical data	
	Burners are intended for use at:	
	Dimensions	
2.3	Description STG 146	1
3. Ger	neral instruktions	1
	General instructions	
3.2	Installation and maintenance instructions	1
3.3	Instructions	1
	Inspection and maintenance	
	Start up	
3.6	Commissioning of installation	1
4. Inst	allation	1
4.1	Delivery check	1
4.2	Preparations for installation	1
	Gas supply	
4.4	Electric connection	1.
	Skeleton diagrams	
	Mounting on the boiler	
	Installation example	
	Inspection of gas nozzle before commissioning	
	Gas nozzle	1
4.10	Multiblock MB-ZRDLE 405-412	1
5. Set	ting the burner	2
5.1	Setting the air pressure switch	
	Setting the min. gas pressure switch	
5.3	Recommended excess air when using default setting	2
	Determining the gas quantity for the system	
	Calculating the quantity of gas supplied	
	Flame monitoring and ionisation current check	
	UV-Detector	
6. Har	nding over of the installation	3
7. Fau	It location, functional troubles	3
8. Elec	ctric equipment	3
	Safety system	
	Wiring diagram LME	
8.3	List of components	3
8.4	Control program at faults; fault mode indicator LME	3
9. Tro	ubleshooting	3
10. 0	General instructions for gasburners	3
11. E	U Declaration of conformity	4

1. General Information

This Installation and Maintenance manual:

- is to be regarded as part of the burner and must always be kept near the installation site
- is intended for use by authorised personnel
- must be read prior to installation
- must be observed by all who work with the burner and associated system components
- work with the burner may only be carried out by certified installers/ personnel

Enertech AB is not liable for any typographical errors and reserves the right to make design changes without prior notice.

Safety instructions

- The burner may only be used for its intended purpose in accordance with the product's technical data.
- The burner may only be installed and operated by authorised personnel.
- The product is packaged to prevent damage from occurring during handling. Handle the product with care. Lifting equipment must be used to lift larger packages.
- The products must be transported/stored on a level surface in a dry environment, max. 80% relative humidity, no condensation.
 Temperature -20 to +60 °C.
- Check that the burner is compatible with the boiler's output range.
- All components must be installed without being bent, twisted or subjected to mechanical or thermal forces which can affect the components.
- The burner must be installed so that it complies with local regulations for fire safety, electrical safety, and fuel distribution.
- The gas outlet from the pressure regulator shall be configured in accordance with applicable regulations and lead to a safe area.
- Make sure when installing the equipment that there is enough space to service the burner.
- Permitted temperature during operation -10 to +60 °C. Max 80% relative humidity, no condensation.
- The installer must ensure that the room has adequate air supply.
- The room must comply with local regulations pertaining to its intended use.
- The installation site must be free of chemicals.
- Burner pipes, fan wheels and air dampers may contain sharp edges.
- The surface temperature of the burner's components can exceed 60 °C.
- Caution: The burner has moving parts, and there is risk of crushing injuries.

- The electrical installation must be professionally carried out in accordance with applicable high voltage regulations, as per Enertech's recommendations.
- Before servicing, shut off the fuel supply and turn off the power to the burner.
- Seal inspections must be performed during installation and servicing to prevent gas leakage.
- Care should be taken by the installer to ensure that no electrical cables or fuel lines are crushed or otherwise damaged during installation or servicing.
- If the boiler is equipped with an access hatch, this must be equipped with a hatch opening switch connected to the burner's safety system.
- When in operation, the burner's noise level can exceed 85 dBA.
 Use hearing protection.
- The burner must not be put into operation without proper safety and protection devices.
- A Class BE fire extinguisher is recommended.
- It is forbidden to alter the design or use accessories which have not been approved by Enertech in writing.
- Prior to operation, the following points must be checked:
- fitting and installation work has been completed and approved
- electrical installation has been correctly performed
- flue gas ducts and combustion air ducts are not blocked
- all actuators and control and safety devices are in working order and correctly set

Actions to take if you smell gas

Turn off the equipment and the boiler. Open windows and doors. Prevent open flames or sparking, e.g. do not turn lights on or off, do not use any electrical appliances, do not use mobile phones. Open windows and doors. Close the gas ball valve. Warn residents; do not use doorbells. Evacuate the building. Notify the installer or gas supplier once the building has been evacuated.

Burner servicing schedule

Servicing must be carried out once a year or after 3000 hours of operation

Burner	1 year	3000 hrs
Inspection of electrical installation	1 year	3000 hrs
Leakage check	1 year	3000 hrs
Filter	1 year replacement at Δp>10 mbar	3000 hrs replacement at $\Delta p > 10$ mbar
Electrodes	Replacement/Cleaning 1 year	Replacement/Cleaning 3000 hrs
Brake disc	Replacement/Cleaning 1 year	Replacement/Cleaning 3000 hrs
Motor	1 year	3000 hrs
Fan wheel	1 Year	3000 h
	Replacement when cleaning	Replacement when cleaning
	needed/ imbalance	needed/ imbalance

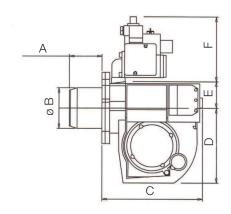
Component replacement intervals

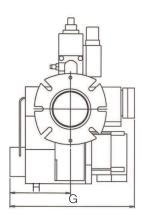
Control system	10 years	250,000 starts
Valve control system	10 years	250,000 starts
Pressure switch	10 years	250,000 starts
Ignition system with flame guard	10 years	250,000 starts
UV flame sensor	10000 hrs	N/A
Gas pressure regulators	15 years	N/A
Gas valve without seal testing	10 years	250,000 starts
Gas valve with seal testing	Replacement upon fault detection	N/A
Gas pressure switch	10 years	250,000 starts
Safety blow-off system	10 years	N/A
Damper motor	N/A	500,000 starts
Contactor	10 years	500,000 starts

The burner and its components must be recycled according to applicable regulations.

Delivery check

- Make sure everything is delivered and the goods have not been damaged during transit.
- If something is wrong with a delivery, report it to the supplier.
- Transport damage must be reported to the shipping company.


2. Technical data

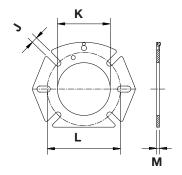

2.1 Burners are intended for use at:

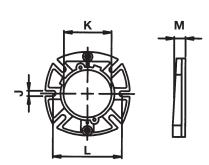
• Hot water boilers in intermittent operation

2.2 Dimensions

Gas connection 3/4-2"

Туре		Length of burner tube	Flange measure A	Burner tube measure B
STG 146/1	Ctondord 1	108	92,5	ø89
51G 146/1	Standard 1	108	65	ø89


	С	D	E	F	G	н	**
STG 146	244	192	61	*202	*290	139	200


2.2.1 Heat generator connection dimensions

	J	K	L	М
STC 146	M10	Ø 90	Ø 125-150	5
STG 146	M10	Ø 90	Ø 125-150	17

^{*} The above dimensions are max. measurements. Depending on the components used, the measurements may vary.

^{**} Min. recommended distance to floor.

172 515 42 2018-03-05

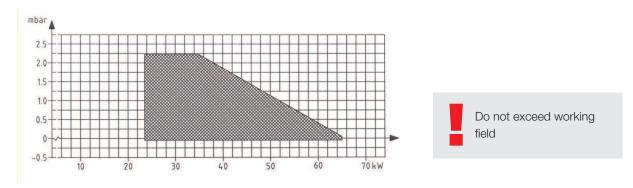
2.2.2 Capacity range

Capacity kW	Gas quantity at min. power Nm³/h ¹)	Gas quantity at max. power Nm³/h ¹)	Max. connection pressure mbar	Min connection pressure mbar	MB-Bloc
STG 146/1					
G20 24-65	2,4	6,5	200 360 360	25 20 20	MBC 65 MBC 120 MB 407
G25 24-65	3,0	8,2	200 360 360	35 25 20	MBC 65 MBC 120 MB 407

Lower heat value Hu at normal state 15°C and 1013.25 mbar EN676							
Grade of gas		kWh/Nm³	MJ/Nm^3	kcal/Nm³			
Natural gas	G20	9.5	34.02	8126			
Natural gas	G25	8.2	29.25	6986			
Propane	G31	24.6	88.00	21019			
Butane	G30	32.5	116.09	27728			

Gas quantity and capacity vary according to grade of gas and connection

2.2.3 Gas categories, approved gases

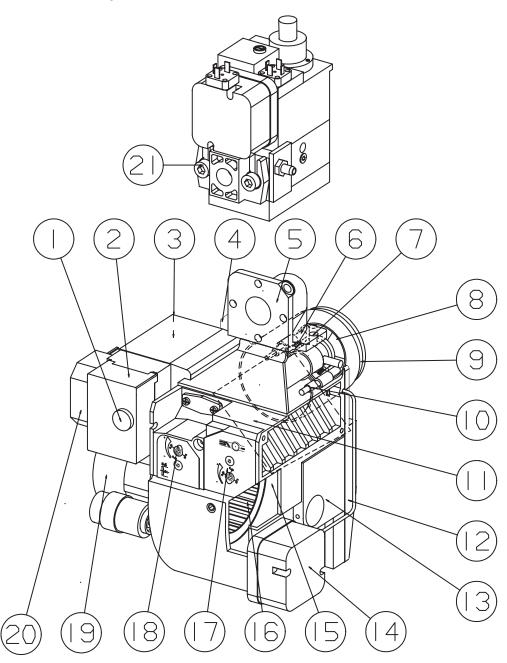

Only dry gas is permitted for use

Gerätekategorien Appliance categories	Versorgungsdrücke Supply pressures	Bestimmungsländer Countries of destination
II _{2R/3R}	20-360mBar	BG, CZ, DE, EE, ES, FR, GR, HU, IS, IT, LU, LV, NO, PT, SI, All countries
II _{2H3B/P}	20-360mBar	AT, CH, CY, DK, FI, LT, RO, SE, SK
II _{2H3P}	20-360mBar	GB, IE,
II _{2L3B/P}	20-360mBar	NL, RO
II _{2E3B/P}	20-360mBar	PL
I _{2E(R)B}	20-360mBar	BE
I _{3P}	20-360mBar	BE

2.2.5 Working field

STG 146/1

G20,G25 24-65 kW


2.2.4 Electric Specification EN 60335-2-102 Burner correspond to IP20

Туре	STG 146
Motor	125W, 0,95A, 230V, 50Hz, 2750rpm
The recommended main fuse motor	6,3 A
Control power	230V1F~2,5A
Sound	79 dBA ± 0,5 dBA

Measurements according to EN 3746: 2010

- Alt.1 The sound level of the burner can be reduced by equipping the burner with silencer. Installation must be done so it does not prevent air supply to the burner.
- Alt.2 The burner's noise level can be reduced by connecting the burner's air intake to the air duct that opens into an appropriate location. Installation must be done so it does not prevent air supply to the burner.

2.3 Description STG 146

Components

- 1. Reset button
- 2. Gas burner control
- 3. Transformer
- 4. Fixing flange
- 5. Connection MultiBloc
- 6. Ionisation electrode
- 7. Inner assembly
- 8. Brake plate

- 9. Burner tube
- 10. Ignition electrode
- 11. Air damper
- 12. Front part fan housing
- 13. Rear part fan housing
- 14. Air pressure switch
- 15. Shielding arrangement fan housing

- 16. Fan wheel
- 17. Air adjustment
- 18. Inner assembly adjustment
- 19. Motor
- 20. Electric connection
- 21. MultiBloc

3. General instruktions

3.1 General instructions

The installation of the gas burner must be carried out in accordance with current regulations and standards. The installers of gas burners should therefore be acquainted with all regulations and ensure that the installation complies with the requirements. The installation, mounting and adjustment should be made with the greatest care and only the correct gas should be used.

3.2 Installation and maintenance instructions

The maintenance instructions supplied with the burner must be kept at an easily accessible location in the boiler room.

3.3 Instructions

The user should be thoroughly in-structed in the function of the gas burner and the whole installation. The supplier must instruct the user.

3.4 Inspection and maintenance

See service schedule.

3.5 Start up

After the burner has been fitted to the boiler and the electric connection, the leakage control, the venting and the electric function test have been carried out, the burner will be ready for start-up.

Howerer, study the sections dealing with adjustments of multi-bloc, combustion air and combustion head. Open the ball valve and switch on the main switch. If the burner starts the actual adjustment can be made.

3.6 Commissioning of installation

Control of the combustion. The combustion quality is checked by means of a flue gas analysis device. Adjust the burner to appr. 20%

excess air in accordance with the table. Check the flue gas temperature. Calculate the efficiency. Check also the actual gas volume on the gas meter so that the correct input is achieved.

4. Installation

4.1 Delivery check

Check that all has been delivered and that the goods have not been damaged during transport. If that is not the case, please notify the delivery company. Transport damages should be reported to the forwarding agency.

4.2 Preparations for installation

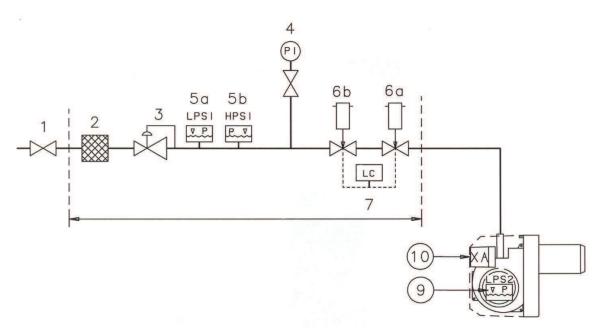
Check that the measurements and capacity range of the burner are compatible with the boiler. The power ratings on the type plate refer to the min. and max. power of the burner.

4.3 Gas supply

For good operating safety, it is important that the gas supply system is installed correctly.

Consider the following:

- Check that the burner is approved for the gas quality of the installation.
 If not, please contact the supplier.
- 2. Check that the gas components of the burner are approved for indicated gas pressure.
- 3. The gas supply system should be installed in accordance with current standards.
- 4. Pipe lines should be run so that service on boiler and burner is facilitated.
- 5. Pipe lines should be run so that eventual contaminants cannot come into contact with the gas components.
- 6. Gas discharge system must be installed prior to local regulations.


4.4 Electric connection

Before starting the electric installation, the main switch must be turned off. If the boiler has a 7-pole and a 4-pole Eurostecker connector, these usually fit directly to the burner. If not, use the connectors included. (Refer to connection under Electric equipment)

If an electric connection other than the one recommended by Enertech is used, a risk of damage and injury can arise.

4.5 Skeleton diagrams

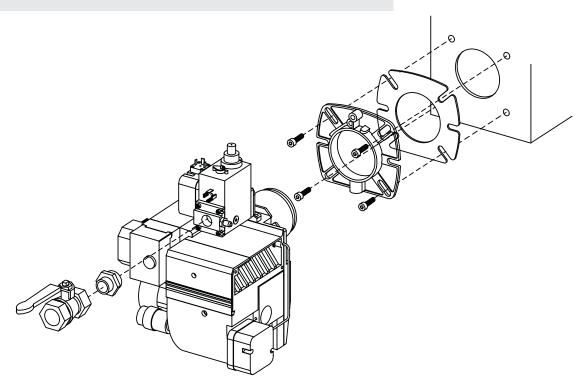
- 1. Ball valve
- 2. Filter
- 3. Governor
- 4. Pressure gauge with shut-off cock
- 5a. Gas pressure switch, mini
- 5b. Gas pressure switch, maxi
- 6a. Main valve
- 6b. Safety valve
- ¹⁾7. Valve proving system
- 9. Air pressure switch
- 10. Gas burner control

Pos. 5b, 7: Components not required according to EN 676.

¹⁾ Required over 1200 kW according to EN 676.

4.6 Mounting on the boiler

Fit the enclosed flange and gasket to the boiler. If new fixing holes must be drilled, use the fixing flange as a pattern. Use fixing screws M8-M10.


The gas armature is from the factory mounted in a horizontal position. The connection of the incoming gas line is made from the right side. Should it for some reason be necessary to make the gas connection in any other direction the armature can be turned 180° to the left and upwards. It is also possible to connect the gas to the multi-bloc straight backwards. The armature can also be extended so that it comes outside the boiler if there is not enough room. Ensure that the distance between the inner asembly and the gas armature is not too long. If the distance is too long there will not be time for the burner to light.

4.7 Installation example

Connect the gas to the burner by means of the ball valve. To facilitate service a union nut is used between the gas supply system and the ball valve. Ensure that the union nut, ball valve and tubing make it easy to remove the burner for inspection and service.

Check the gas tightness.

4.8 Inspection of gas nozzle before commissioning

General rules

Care should be taken by the installer to ensure that no electrical cables or fuel/gas pipes are trapped or damaged during installation or service/maintenance.

Inner assembly

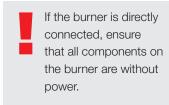
Check that the ignition and ionisation electrodes are correctly set. In the figure (see the gas nozzle chapter), the dimensions are specified for adjustment of the ignition and ionisation electrodes.

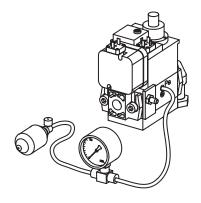
Gas quality

Ensure that the burner head is meant for the gas quality to be used (see capter gas nozzle).

De-aerating

De-aerating of the gas line is conducted, for example, by unscrewing the screw on the measuring nipple for the connection pressure. Connect a plastic hose and release the gas in a safe place. Once de-aerating is completed, be sure to refit the screw on the measuring nipple.

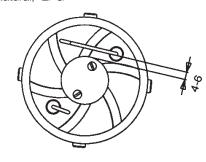

Leakage control

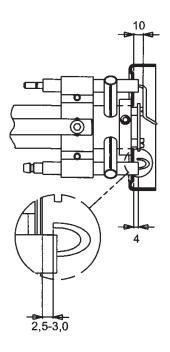

When making a leakage control of the gas supply system the solenoid valve should be closed. Connect a pressure gauge to the test nipple Pa, see fig. The test pressure in the system should be 1,5x max. inlet pressure or min. 150 mbar. If any leakage, locate the source by means of soapy water or a leak location spray. After tightening repeat the test.

Electric function test:

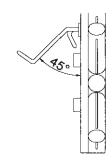
Ensure that phase and neutral are not reversed. The gas shut-off cock should be closed. To prevent the gas pressure switch from locking out it should be linked temporarily.

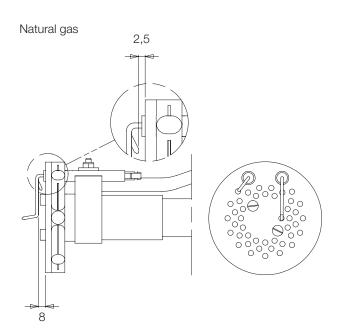
After the main switch has been switched on and the thermostats have been adjusted the pre-purging period begins (30-35sec.). At the end of this period the pre-ignition period starts (0,5-2,5 sec. dependent on the design of the gas control). The gas valve is energized and opens and flame is established. At the end of the safety time (2-3 sec.) the gas control locks out. The solenoid valve and the motor will be "dead". Remove the link from the gas pressure switch after the test is finished.

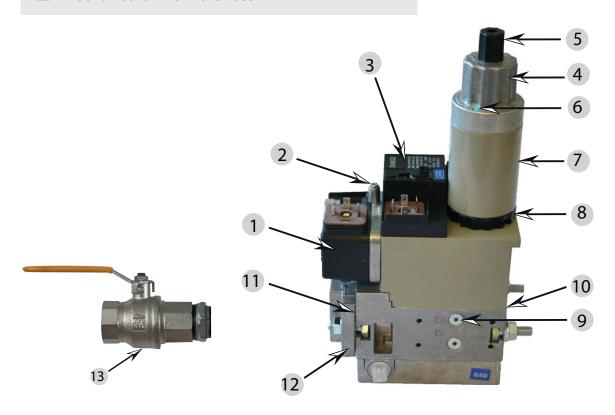



172 515 21 2018-01-08

4.9 Gas nozzle


Inner assembly


Natural, LPG


LPG

5.4 Multiblock MB-ZRDLE 405-412

All gasline components shall be assembled and mounted without bending, torque and outher mechanical or thermal stress.

- 1. Gas pressure switch
- 2. Inlet pressure
- 3. Governor with pressure adjustment
- 4. Hydraulic device, adjustment of stage 2
- 5. Protective cover, start gas adjustment
- 6. Lock screw for flow adjustment
- 7. Main valve
- 8. Knob for adjustment of stage 1
- 9. Test nipple, pressure after governor
- 10. Test nipple for nozzle pressure
- 11. Filter
- 12. Fixing flange
- 13. Ball valve

Max. inlet pressure: 360 mbar. Adjustable governor pressure:

405 - 412 S50 = 4 - 50 mbar

415 - 420 S20 = 4 - 20 mbar

415 - 420 S50 = 20 - 50 mbar

Solenoid valve: Slow opening valves with adjustable start load, stage 1 and stage 2.

Turn to the left = the start gas flow is increased.

172 515 11 2018-01-03

Flow adjustment 2-stage design

For stage 1, loosen the lock screw a. Turn the hydraulic device e:

to the right = the gas flow is reduced

to the left = the gas flow is increased

For stage 2, turn the hydraulic device b:

to the right = the gas flow is reduced

to the left = the gas flow is increased

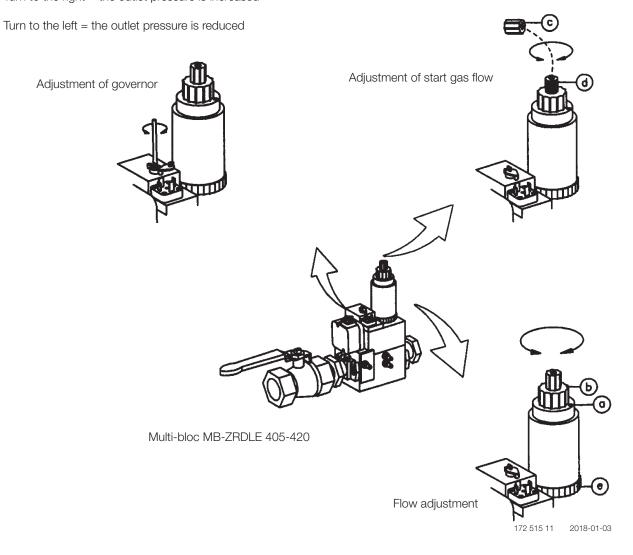
Do not forget to tighten the lock screw again.

Adjustment of governor

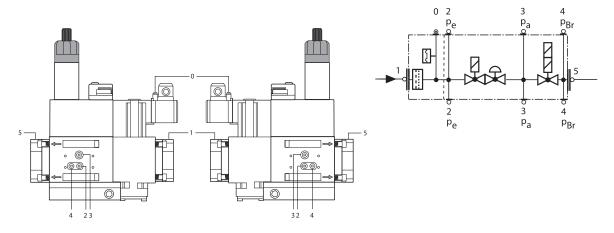
Adjust outlet pressure from governor by means of a screw driver. Min. and max. outlet pressures correspond to appr. 60 turns of the spring. It is not possible to change pressure springs in order to change the outlet pressure.

Turn to the right = the outlet pressure is increased

.

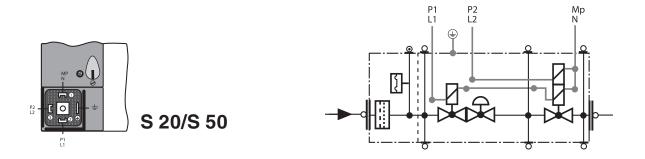

Adjustment of start gas flow

Remove the protective cover c.


Turn the adjustment knob d (use the protective cover as a tool) to the desired start gas flow.

Turn to the right = the start gas flow is reduced

Turn to the left = the start gas flow is increased



5.4.1 Pressure taps

1,2,3,4,5 1/8 screwed sealing plug

5.4.2 Electrical connection

5. Setting the burner

Adjustment of burner

The burner is from the factory pre-set to an average value that must then be adjusted to the boiler in question.

All burner adjustments must be made in accordance with boiler manufacturers instructions. These must include the checking of flue gas temperatures, average water temperature and CO2 or O2 concentration

General instructions

The installation of the gas burner must be carried out in accordance with current regulations and standards. The installers of gas burners should therfore be acquainted with all regulations and ensure that the installation complies with the requirements. The installation, mounting and adjustment should be made with the greatest care and only the correct gas should be used.

Operating instructions

The operating instructions accompanying the burner should be left in a prominent position in the boiler room.

Instructions

The user should be thoroughly instructed in the function of the gas burner and the whole installation. The supplier must instruct the user.

Inspection and maintenance

Daily inspection is advisable.

Service

Service should only be carried out by qualified personell. Replacement parts should be of the same make and approved by the same authorities as the original. If the burner is converted to fire another gas quality it must be re-commissioned. If town gas is to be fired the combustion head must be converted and the gas train adjusted to suit, (e.g.a larger gas armature or a different spring in the governor may be required).

Start up

After the burner has been fitted to the boiler and the electric connection, the leakage control, the venting and the electric function test have been carried out, the burner will be ready for start-up.

Hower, study the sections dealing with adjustments of multi-bloc, combustion air and combustion head.

Open the ball valve and switch on the main switch. If the burner starts the actual adjustment can be made.

Air adjustment

On all burners the air adjustment can be made with or without the cover fitted. Final fine adjustment must be made with the cover on.

Adjustment of burner head

The burners are equipped with an adjustment device changing the position of the brake plate in the burner head. This is used to adjust the corect pressure drop over the combustion device and thereby obtain a good pulsation free combustion.

Which position to use depends on input and overpressure in the boiler.

A general rule is that the lower capacity the smaller the opening between brake plate and combustion device.

Adjustment of brake plate

 Turn by means of an allen key the screw in the desired direction.

STG120/1, STG120/2, STG146/1

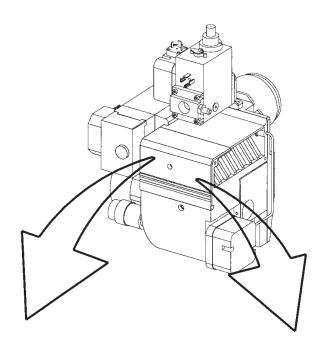
- To reduce the opening: turn the screw to the left.
- To increase the opening: turn the screw to the right.

STG146/2

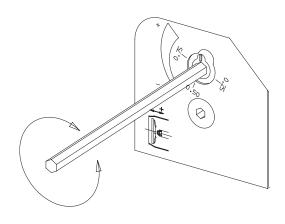
- To reduce the opening: turn the screw to the right.
- To increase the opening: turn the screw to the

The adjustment of the position of the brake plate affects the air flow. It is therefore always necessary to make a fine adjustment of the air by means of the adjustment device of the burner.

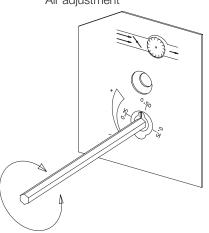
Gas quality	CO ₂ %	02%	max. CO ₂ %
	lambda 1,2		
Natural gas	10,0	3,5	11,9
LPG	11,5	3,5	13,9

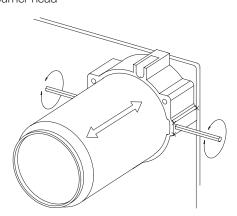

Control of burner head

To check the burner head, brake plate and electrodes proceed as follows:


Remove the cover. Loosen the union nut between inner assembly and multi-bloc. Loosen the burner from the flange and withdraw the burner from the boiler. If it is necessary to remove the burner tube, loosen the two allen screws, turn and withdraw the burner tube.

Commissioning of installation


Control of the combustion. The combustion quality is checked by means of a flue gas analysis device. Adjust the burner to appr. 20% excess air in accordance with the table. Check the flue gas temperature. Calculate the efficiency. Check also the actual gas volume on the gas meter so that the correct input is achieved.


Adjustment of inner assembly

Air adjustment

Control of burner head

5.1 Setting the air pressure switch

The air pressure switch should block the burner if the air quantity supplied for combustion is insufficient. The air pressure switch must be set so that, if there is a defective air supply at the burner's max. or min. capacity, it reacts before the monitored pressure falls so much that it results in poor combustion.

Inställningsområde ca:

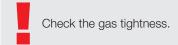
LGW 10 1-10 mbar LGW 50 2,5-50 mbar

Setting for air pressure switch

1. Remove the protective cover, screw (Y).

Be careful when adjusting the air pressure switch; it contains a live component.

- 2. Start the burner.
- 3. Carefully turn the scale on the air pressure switch clockwise until the air pressure switch stops the burner. Is the tolerance on the scale for the min. air pressure switch approx. ±15%?
- 4. Try to find the pressure at which the burner stops for both the minimum and maximum input power by turning the scale. Make a note of the values and then set the air pressure switch on the basis of the highest pressure noted at which the burner stopped.
- 5. The air pressure switch should be set to a pressure approx. 10–15% lower than the highest noted pressure at which the burner stopped.
- 6. After setting the air pressure switch, perform repeated starts and run through the burner's set output range several times. This is to ensure the reliable function of the burner. If breakdowns or interruptions occur, the air pressure switch is probably set to a too narrow position.
- 7. Fit the protective cover, screw (Y).



5.2 Setting the min. gas pressure switch

The min. gas pressure switch should react to a burner connection pressure that is too low and in such cases prevent the burner from starting. If the connection pressure to the burner is too low during operation, the min. gas pressure switch should stop the burner. The burner can start again once the connection pressure has risen above the pressure set for the min. gas pressure switch.

Setting for min. gas pressure switch

- 1. Remove the protective cover, screw (Y).
- 2. Open the pressure outlet (X) and connect a manometer to measure the connection pressure.
- 3. Start the burner.
- 4. Measure and make a note of the connection pressure to the burner during normal operation at the highest input power.
- 5. Based on the desired connection pressure set, determine the connection pressure at which the gas pressure switch should stop the burner. Set the connection pressure at which the burner is stopped at a level where the burner is stopped before poor combustion occurs.
- 6. Set the min. gas pressure switch to this value by turning the scale.
- 7. Check the setting by carefully closing the ball valve while measuring the connection pressure.
- 8. When the min. gas pressure switch stops the burner, the value measured should then approximately correspond to the setting on the min. gas pressure switch. The tolerance on the scale for the min. gas pressure switch is approx. ±15%.
- 9. Open the ball valve.
- 10. Remove the pressure gauge and close the pressure outlet (X).

11. Fit the protective cover, screw (Y).

5.3 Recommended excess air when using default setting

Grade of gas	Excess a	Max. % CO ₂	
	% O ₂ % CO ₂ Lambda 1.2		
Natural gas	3–5	≈10	11.9
Propane	3–5	≈11.5	13.9
Butane	3–5	≈11,5	14,1
Liquefied petroleum gas (LPG)	3–5	≈11	13,8

5.4 Determining the gas quantity for the system

The heat values indicated are normal values; the heat value varies according to the origin of the gas. For more exact information on values, contact the gas distributor.

Lower heat value Hu at normal state 15°C and 1013.25 mbar EN676				
Grade of gas		kWh/Nm³	MJ/Nm^3	kcal/Nm³
Natural gas	G20	9.5	34.02	8126
Natural gas	G25	8.2	29.25	6986
Propane	G31	24.6	88.00	21019
Butane	G30	32.5	116.09	27728

5.4.1 Example of how to calculate the gas quantity (natural gas G20):

$V_0 =$	Desired quantity of gas	[Nm³/h]
Q =	Boiler output	[kW]
H _U =	Gas heat value	[kWh/Nm³] or [MJ/Nm³] or [kcal/ Nm3]
η=	Boiler efficiency	[%]

Calculation example:

$$Q = 50 \text{ kW}$$

 $H_{II} = Example A: 34020 MJ/Nm³$

Example B: 9.5 kWh/Nm³

Example C: 8126 kcal/Nm³

$$\eta = 90\%$$

If the barometer reading (altitude), pressure and temperature of the gas deviate significantly from normal values, this must be taken into account as follows:

$$T = T$$
 Temperature of gas at the gas meter [°C]
 $B = B$ Barometer reading [mbar]
 $P = P$ Pressure of gas at the gas meter [mbar]

f = Factor calculated for multiplication with flow in Nm³/h to arrive at actual flow in Nm³/h.

$$V = Actual flow$$
 [m³/h]

$$f = \frac{273}{273+T} \cdot \frac{B+P}{1013.25}$$

Calculation example:

$$T = 15^{\circ}C$$

B = 945 mbar

P = 15 mbar

$$f = \frac{273}{273+15} \cdot \frac{945+15}{1013.25} \approx 0.90 \text{ Nm}^3/\text{h}$$

This means that the quantity of gas read from the gas meter should actually be read off as 1.11 . the calculated flow in a normal state.

5.5 Calculating the quantity of gas supplied

The quantity of gas supplied can be calculated if the system is equipped with a gas flow meter of some type. The procedure here is usually to measure how long it takes for the burner to consume a certain quantity of gas.

To measure:

t = Time for a certain quantity of gas consumed by the burner. [h]

$$M = Quantity of gas consumed.$$
 [m³]

$$V = Actual gas flow$$
 [m³/h]

$$V = \frac{M}{t} [m^3/h]$$

Calculation example:

$$t = 1 \min 10 s$$

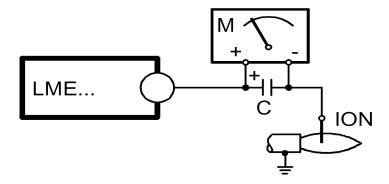
$$M = 100 \text{ dm}^3 \text{ (litre)}$$

$$M = \frac{100}{1000} = 0.1 \text{ m}^3$$

$$t = \frac{1}{60} + \frac{10}{3600} = 0.0194 \text{ h}$$

$$V = \frac{M}{t} = \frac{0.1}{0.0194} \approx 5.1 \text{ m}^3/\text{h}$$

7.5 Flame monitoring and ionisation current check


The standard version of the burner is monitored according to the ionisation principle. The ionisation current should be checked on initial start-up and at each service visit.

The reason for low ionisation current can be leakage current, poor connection to earth, fouling or incorrectly positioned ionisation electrode in the combustion head. Occasionally, an incorrect gas/air mix may result in poor ionisation current. Ionisation current is measured using a micro ammeter (μ A) connected in series with the ionisation electrode and gas burner control. Connect the μ ammeter according to the diagram. The minimum required ionisation current is shown in the table. In practice, this current must be significantly higher, preferably more than 10 μ A. Connection of the μ A instrument is made easier by the fact that all gas burners are equipped with a divisible ionisation cable.

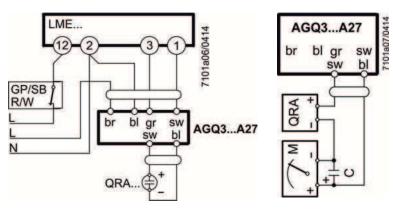
Technical data

For continuous operation!

Idle voltage at ION-terminals	AC 115-230 V
Protect the ionisation ele	ctrode from electric shock!
Short-circuit current	Max. AC 100-300 mA
Min. current for flame detection	Min. DC 1.5 μA
Required current to ensure	Min. DC 3 μA
detection	
Possible detection current	Max. DC 20 μA
Operational indicator lamp	<5 μA DC
flashes green	
Operational indicator lamp	>5 µA DC
shines green	

172 615 02 2018-01-02

7.6 UV-Detector


DC current detector signals with flame detector	Min. required	Max. possible
QRQ		
Measurement at the flame detector QRA	200 μΑ	500 μΑ

Ancillary unit AGQ3...A27

In connection with burner controls LMExx.xxxx2, use of UV ancillary unit AGQ3...A27 is mandatory. Correct functioning of aged UV cells can be checked as UV test with a higher supply voltage across the UV cell after controlled shutdown until terminal 3 ON.

Connection diagram

Measuring circuit for measuring the UV flame current

Measurement made at the flame detector QRA...

7. Handing over of the installation

- Make repeated start attempts to ensure that the adjustments function.
- Close the ball valve during operation to check that the gas switch switches off at the set value.
- Remove the hose for the air pressure switch to check that the burner locks out.
- Check that all protective covers and measurement nipples are mounted and fastened.
- Fill out necessary test reports.
- Instruct the persons in charge of the operation on the service and maintenance of the installation and what to do should any troubles occur.
- Inspection and service must be carried out by authorized personnel.

Review and service should be performed by authorised personnel only

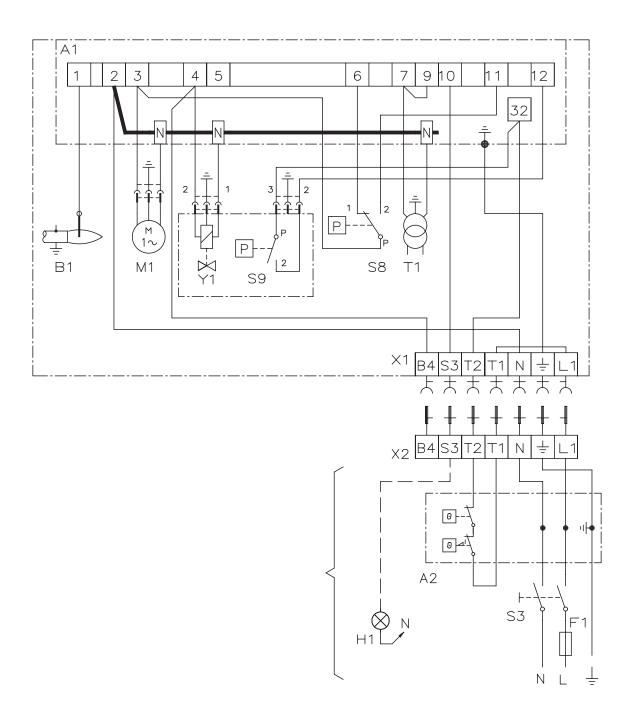
8. Fault location, functional troubles

Trouble free operation is dependent on three factors: electricity, gas and air supply. Should there be any changes in the ratio between these three factors there is a risk of break downs. It has been proved that most break downs are caused by simple faults. Before calling the service engineer, the following should therefore be checked:

- Is the gas cock open?
- Are all fuses in order and the current switched on?
- Are the thermostats correctly set?
- Are pressostats, overheating protection etc. in operating position and not locked-out?
- Is the gas pressure sufficient?
- Is the gas burner control in start position?
- Has the gas control or the motor protector locked out? Reset.
- Is the circulation pump in operation?
- Is there a supply of fresh air to the installation?
- If integral components are of a different make from what is stated in this manual, see the enclosed loose-leaf.

8. Electric equipment

8.1 Safety system


Safety systems must be installed in accordance with regulations that are applicable for the appliance. This may differ according to the process burner are installed in to. Se local regulations for information.

Safety system cables must be run in separate cables outgoing signal must not come in same cable as incoming signal. Signals must be in different harnesses for safety reasons.

Safety system as door switches, water level, pressure, temperature and other safety limiters must be installed in safety loop according to process.

172 615 05 2018-01-02

8.2 Wiring diagram LME

8.3 List of components

A1 Burner control
 A2 Power control
 B1 Ionization electrode
 S8 Air pressure switch
 S9 Gas pressure switch
 T1 Ignition transformer

F1 Operating fuse X1 Connection terminal board

H1 Operating lampM1 Burner motorX2 Earth terminalY1 Solenoid valve 1

S3 Control thermostat

8.3.1 Function LME...

Operating switch ON-Thermostat ON-Gas pressure switch ON

A check that the air pressure switch **does not** indicate fan pressure is carried out

2. Burner motor starts

A check that the air pressure switch indicates sufficient fan pressure is carried out

3. The ignition spark is created

4. The gas solenoid valve is open

The gas is ignited. The ionisation electrode now indicates a flame

5. The safety time expires

The ignition spark ceases. The safety period ceases. If the spark is missing or it disappears after this time limit, the gas burner control is blocked

6. Operating position

7. Stop

The operation of the burner can now be stopped with the control switch or thermostat

If the gas burner control is blocked

Red light in the gas burner control is lit. The burner is restarted by pushing the reset button

8.4 Control program at faults; fault mode indicator LME

8.4.1 Colour codes

Table colour codes for multi-coloured signal light (LED)		
Status	Colour codes	Colours
Waiting period «tw», other waiting	0	Off
periods		
Ignition phase, ignition controlled	•0 •0 •0 •0 •0 •	Blinking yellow
Normal operation	□	Green
Operation, poor flame signal	000000000	Blinking green
Illegal flame signal during start-up		Green-Red
Undervoltage	• • • • • • • • • •	Yellow-Red
Fault, alarm	▲	Red
Blinking code for fault codes	$\triangle \circ \triangle \circ \triangle \circ \triangle \circ$	Blinking red
Interface diagnostics		Red flicking

	Continuous
0	Off
A	Red
•	Yellow
	Green

8.4.1.1 Diagnosing alarm causes

After alarm disconnection, the red alarm signal light is lit continuously. The diagnosing of the alarm cause can be read according to the following sequence:

Light period	Press the reset	Blinking		
(waiting period ≥ 10 s)	button > 3 s	code	Pause	Blinking code
			•	• • • •

8.4.1.2 Limiting of starting repetitions

LME 11... has a function with start repetition if the flame is not created at start or disappears during operation.. LME 11... allows max. three repetitions during continuous starting cycle.

8.4.1.3 Alarm code table

Red blinking code on signal lamp (LED)	Possible causes
Blinking 2 x	No flame creation at End of "TSA" - defective or fouled flame monitoring - defective or fouled fuel valves - poor burner setting - defective firing device
Blinking 3 x	"LP" defective - No air pressure switch signal after "t10" - "LP" is welded in open position
Blinking 4 x	Illegal flame signal during start-up
Blinking 5 x	Time out "LP" - "LP" is welded in open position
Blinking 6 x	Free
Blinking 7 x	Too many flame disappearances during operation - poor burner setting - defective or fouled fuel valves - defective or fouled flame monitoring
Blinking 8 x	Free
Blinking 9 x	Free
Blinking 10 x	Connection fault or internal fault, outgoing contacts or other faults
Blinking 14 x	CPI contact not closed

During the diagnosing of the alarm cause, the control outputs are voltage-free.

- The burner is disconnected
- Exception, alarm signal «AL» at board 10
- Reconnection of the burner happens after resetting only.
- Press the reset button 0.5...3 s

8.4.1.4 Interface diagnostics

To change to interface mode, press and hold the reset button longer than 3 s. To go back to the normal position, press and hold the reset button longer than 3 s. If the gas burner control is in the alarm position, it is reset by pressing the reset button 0.5...3 s.

10. Troubleshooting

Gas Burner

Conditions favourable to disruption-free operation of the system can only be guaranteed through the interaction between three factors – electricity, gas flow and combustion air. A change in any of these factors may cause disruptions.

It has been shown that a large proportion of disruptions can be attributed to relatively small things. Therefore, before requesting servicing, you should ascertain the following:

- 1. Are the system's gas taps open?
- 2. Are the fuses intact and is the power on?
- 3. Are control devices (room thermostat, boiler thermostat, etc.) correctly set?
- 4. Is gas pressure to the burner sufficient?
- 5. Are the burner controls on standby and not locked?
- 6. Is air supply to the burner adequate?

To facilitate troubleshooting, we have created a table of the most common faults that may arise in a gas burner system and how they should be rectified.

Cause of fault	Action
Burner does not start	
No gas	Make sure all gas taps are open
No power	Check the fuse, thermostat and electrical connections
Burner motor does not start	Motor protection has tripped. Motor faulty.
Burner control faulty	Replace
Burner motor running, no ignition spark at the end of pre-	
aeration	
No power in the terminals	Check the connector. Replace faulty burner controls
Ignition electrodes in contact with each other or earth	Adjust
Ignition electrode porcelain damaged	Replace the electrodes
Poor connection to cable connectors	Adjust connection
Ignition cables damaged	Replace
Transformer damaged, no power to secondary winding	Replace the transformer
Ignition cable and ionisation cable swapped around	Reconnect
No flame propagation	
Gas solenoid valve faulty	Replace
Gas solenoid valve does not open despite having power	Replace solenoid valve terminals, or entire valve
No power to solenoid valve	Check the connection
No electrical connection through air pressure gauge	Check the air pressure gauge's settings and
	functions
Ignition load incorrectly set	Increase/decrease gas supply Reduce
	airflow

172 615 06 2018-01-10

Cause of fault	Action
Burner control faulty	Replace
Air pressure gauge incorrectly set or faulty	Check the settings and reset, or replace
No acknowledgement signal due to incorrect adjustment or	Check the settings and realign.
misalignment of the control motor cams.	G G
Burner trips after safety time limit despite flame propagation	
No ionisation current or UV cell incorrectly positioned	Adjust ionisation electrode and UV cell
	Check cables and connectors
Burner control monitor faulty	Replace burner control
Voltage lower than 185 V	Contact an electrician
Ignition electrodes disrupting ionisation current	Adjust ignition electrodes. Re-polarise the
	transformer
Poor earth connection	Ensure adequate earth connection
Phase and neutral swapped around	Check wiring diagram and change
	accordingly
Burner trips during pre-aeration.	
Air sensor faulty or incorrectly set	Increase/decrease air setting. Reduce air
	volume
Ignition load incorrectly set	Increase/decrease gas supply Reduce
	airflow
Gas pressure too low	Increase pressure. If necessary, contact gas
	supplier
Pulsations at start-up	
Ignition electrodes incorrectly set	Adjust
Gas pressure too high	Check and adjust using pressure gauge and
Thus goes side blooked	Charle the chimpsy flue
Flue gas side blocked	Check the chimney flue
Burner pulsates during operation	A ali: - a t
Burner incorrectly set	Adjust
Burner dirty	Clean the burner
Incorrect chimney	Check and modify dimensions if necessary
Burner functioning properly but with occasional blockage	
lonisation current too low	Check. Must be at least 6 µA, but should
LIV cell in a greath a position of	ideally lie between 8 and 20 µA
UV cell incorrectly positioned	Adjust
Voltage drop at certain times	Must not drop below 15% of rated voltage.
Incorrectly ext or faulty air sonsor	Check the settings and reset or replace
Incorrectly set or faulty air sensor Ignition electrode overload	Check the settings and reset, or replace
Burner control ambient temperature too high	Replace Insulate for heat, Max. 60 °
	Check the transformer
Ignition spark too weak Poor combustion	OHECK THE TRANSPORTIES
	Chook the chimney
Poor draught conditions	Check the chimney

Cause of fault	Action
Flue gas temperature too high	Boiler overloaded Decrease the gas volume, sweep the chimney if necessary
CO ₂ content too low	Choke the air supply. Check the boiler for any leakages. Choke the draught if too high
CO content too high	
Surplus air when using natural gas and liquefied petroleum (propane, butane)	Choke the air supply
Poor air supply	Open the air supply. Check flue gas damper
Holes in gas nozzle clogged.	Clean
Poor fresh air intake	Check and increase
Flame at incorrect angle due to combustion head out of position	Check the combustion head and readjust
Condensation build up in boiler and chimney	
Flue gas temperature too low or gas volume too low	Raise the flue gas temperature by increasing gas volume Insulate the chimney

11. General instructions for gasburners

11.4.1 Installation

- Follow standards and instructions applicable to the installation of gas burners
- 2. Ensure that the electric installation is made in accordance with existing regulations
- 3. Check that the fresh air intake of the boiler room is sufficiently dimensioned
- 4. Check by studying the data plate that the efficiency of the burner is adapted to the boiler output
- 5. Check that the burner is adapted to the gas quality in question
- 6. Check that the input pressure of the gas is correct
- 7. Check that the dampers of the boiler are open
- 8. Check that there is water in the system
- 9. Check that thermostats etc. are correctly adjusted
- Read the instructions and follow the directions given for the burner as to starting-up and service

11.4.2 Maintenance

General instructions

- 1. Keep the boiler room clean
- Ensure that the fresh air intake of the boiler room is not restricted
- 3. Switch off the current and shut off the gas supply if the burner must be withdrawn from the boiler
- 4. Do not use the boiler for burning paper and waste if there is no special arrangement (fire room) for this

Normal operation

- Ensure that the air supply to the burner is not obstructed by dust and dirt
- 2. Have the installer make a yearly overhaul of the installation so that safety is not jeopardized
- 3. Have the installer at the yearly overhaul also adjust the burner to ensure optimal combustion economy
- 4. Check periodically that there is water in the system (fill up if necessary) and that thermostats etc. are normally adjusted
- 5. Ensure that there is no water or dampness in contact with the burner

11.4.3 If the burner has stopped

- Press the reset button of the relay
- 2. Check that the max. thermostat has not cut out
- 3. Check other thermostats for example room ther mostat, if any
- 4. Check that the gas pressure to the burner is sufficient
- 5. Check that the electric fuses have not blown
- Make a new attempt to start the burner and check the counter of the gas meter to find out whether the solenoid valve opens
- 7. If the burner does not start in spite of repeated starting attempts call the installer

11.4.4 Shut-Off

- 1. Switch off the current with the main switch
- 2. Shut-off the gas supply with the shut-off cock on the burner

11.4.5 Warning

- Never keep your face in front of the fire room door when starting up the burner
- 2. Do not use naked flame when inspecting the fire room

Authorized	l installer::
Address:	
Telephone:	

Installation	Boiler	
Name:	Type:	Efficiency kW:
Address:	Burner	
	Type:	Efficiency kW:
Installed by:	Date:	

Date										
	Nm³ gas/h	Governor		CO ₂	CO		Ionisation current	Pressure		Efficiency
								Fire	Chimney	
								room		
Measu-										
rement		Before	After	%	%	°C	μΑ	mbar	mbar	%
	Small									
	Flame									
	Large									
	Flame									
	Measures									

Date										
	Nm³ gas/h	Governor		CO ₂	CO		Ionisation current	Pressure		Efficiency
								Fire	Chimney	
								room		
Measu-										
rement		Before	After	%	%	°C	μΑ	mbar	mbar	%
	Small									
	Flame									
	Large									
	Flame									
	Measures									

Date										
	Nm³ gas/h	Governor		CO ₂	CO	Fluegas	Ionisation	Pressure		Efficiency
						temp	current	Fire room	Chimney	
Measu-										
rement		Before	After	%	%	°C	μА	mbar	mbar	%
	Small									
	Flame									
	Large									
	Flame									
	Measures									

EU Declaration of conformity

Bentone Gasburners

Certificate No.	Туре	Certificate No.	Туре	
CE-0123CT1269	BFG 1	CE-0123CT1326	BG 550	
CE-0123CT1270	STG 120	CE-0123CT1337	BG 600	
CE-0123CT1281	STG 146	CE-0123CT1348	BG 650	
CE-0123CT1292	BG 300	CE-0123CT1359	BG 700	
CE-0123CT1304	BG 400	CE-0123CT1360	BG 800	
CE-0123CT1315	BG 450	CE-0123CT1371	BG 950	

This declaration of conformity is issued under the sole responsibility of the manufacturer. The object of the declaration described above is in conformity with:

Gas Appliance Regulation 2016/426/EU Machinery Directive 2006/42/EC

EMC 2014/30/EU

Restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU

References to the relevant harmonised standards used or references to the other technical specifications in relation to which conformity is declared:

EN 676+A2:2008

(excluded Annex J/K)

Automatic forced draught burners for gaseous fuels

Additional information can be downloaded at:

www.bentone.com

Enertech AB Box 309 S-341 26 LJUNGBY

Ljungby February 15th, 2018

Håkan Lennartsson Managing Director

Enertech AB

